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multi-agent systems—making them very different from 
other complicated multi-component systems, where mul-
tiple links among the components may achieve efficient 
interaction and control with fairly predictable and often 
pre-optimised properties [57]. In many multi-agent setups, 
including command-and-control scenarios, the emergent 
behaviour is dependent on agent architecture and skills, the 
employed communication policy, the opponent tactics, and 
strategies, and not least on various unknown factors present 
in often adversarial environment [33].

Typically, it appears to be extremely difficult to rigor-
ously investigate and evaluate multi-agent teamwork, coor-
dination, and overall performance. One possible avenue for 
predicting team performance is to measure communication 
efficiency within a team during a scenario and estimate its 
impact on the team’s performance. In particular, we intend 
to characterise coordination of multi-agent teams in terms 
of their communication efficiencies, suitably defined for 
multiple situations, message types, and contexts, and cor-
relate these with the overall team performance metrics.

1.1  RoboCup domain

In pursuing our objective, we examine the domain of the 
RoboCup Soccer Simulation 2D League, which allows us 
to run multiple simulation experiments while varying a 
number of variables associated with agent communica-
tions. RoboCup (the “World Cup” of robot soccer) was 
first proposed in 1997 as a standard problem for the 
evaluation of theories, algorithms, and architectures for 
Artificial Intelligence, robotics, computer vision, and 
several other related areas [39], with the overarching 
RoboCup goal of developing a team of humanoid robots 
capable of defeating the FIFA World Cup champion 
team (the “Millennium Challenge”). Since 1997, The 
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RoboCup initiative has convincingly superseded chess as 
a benchmark for Artificial Intelligence, developing along 
two general complementary paths [38]: physical robot 
leagues, and software agent (simulation) leagues [49].

RoboCup 2D Soccer Simulation League specifically 
targets the research question of how the optimal collec-
tive dynamics can result from autonomous decision-
making under noisy conditions and several constraints, 
set by tactical plans and teamwork (collaboration) as 
well as opponent (competition) [15, 40, 46, 53, 56, 57, 
61, 62, 71, 73, 75, 82]. It encourages development of 
diverse player behaviours and team strategies [6, 8, 35, 
41, 54, 60, 70, 85], and offers a robust framework for 
evaluating the emergent collective behaviours and team 
performance.

In particular, RoboCup Soccer Simulation League (both 
2D and 3D) involves software agents playing games on a 
centralised server (maintaining the “world model”, includ-
ing player and ball dynamics and kinematics) over a net-
work [17], and offers several obvious advantages in com-
parison to physical leagues, including the ability to simulate 
soccer matches without physical robots and abstracting 
away low-level hardware and environmental issues (e.g., 
motor temperature and breakages) [14]. As pointed out by 
Budden and Prokopenko [14], the simulation leagues often 
serve as platforms for the initial development and evalua-
tion of software modules for later integration into physi-
cal robots [44, 48], and have applications well beyond the 
RoboCup domain (e.g., localisation and mapping [12, 30]).

Each team consists of 11 players and a “coach”, which is 
a non-playing agent responsible for assigning each agent a 
specific type, given a number of randomly generated physi-
cal profiles (including characteristics such as speed and 
stamina). Each of the fully autonomous simulated agents 
interacts with the soccer server, receiving information from 
the server relative to its current field of view; determining 
what actions to execute; and submitting these requests to 
the server. The server fulfills these requests and resolves 
any resultant conflicts (e.g., two agents attempting to 
occupy the same spatial location). The server proceeds in 
real time and imposes noise on both the agents’ observa-
tions and actions [49]. It is the responsibility of each agent 
to submit its action requests at the appropriate times to stay 
synchronised with the soccer server. Furthermore, each 
agent is allocated an individual CPU process, with no direct 
inter-process communication permitted. In addition, the 
soccer server provides a low-bandwidth, indirect communi-
cation method between the agents by supporting simulated 
verbal commands.

Crucially, although simulation league agents have 
only noisy perception of their environment, the soccer 
server itself has perfect information regarding the global 
state, enabling replicable quantification of experimental 

performance, based on the ability to run massively-parallel-
ised experiments [13, 14].

1.2  Multi‑agent communication and coordination: 
related work

Analysis of various links between cooperation, coordi-
nation, and performance has been a continuing focus of 
research in multi-agent systems, within the general class of 
problems in which multiple agents have to coordinate their 
strategies to cooperate on some task. The term team gener-
ally refers to a set of agents with a common goal.

Approaches to activity coordination in multi-agent 
teams range from strictly top down (plan-based coordina-
tion) to purely emergent (reactive coordination), with many 
hybrid variants, each having its specific advantages and dis-
advantages. This diversity is directly affected by specific 
multi-agent communication policies which facilitate coor-
dination and/or cooperation among agents.

For example, Stone and Veloso [72] investigate coopera-
tion in multi-agent systems to improve team performance 
in the context of multi-agent learning. Several surveys of 
the literature on multi-agent systems are available [34, 74, 
81]. Shoham and Leyton-Brown [68] visit the foundations 
of multi-agent systems.

More recently, as the ability to generate and collect data 
improved, there has been growing interest into using data-
analytical methods in applied multi-agent domains. For 
example, Rein and Memmert [59] advocate the relevance 
and applicability of data analytics to tactical analysis of 
team sports. In a different domain, Ajitha et al. [3] apply 
multi-agent systems principles to software systems, with 
an emphasis on measuring cooperation among software 
agents.

There have also been various studies which investigate 
how communication in multi-agent systems contributes to 
improved performance of teams of agents. Communication 
has the potential to improve team performance in domains 
in which individual agents are only able to observe a small 
part of the world; the assumption of partial observability 
described by Veloso et al. holds. In such domains, agents 
can communicate to share information about their sur-
roundings with other agents, thereby helping all agents 
compile more complete knowledge about the environment. 
Of course, communication usually comes at some cost. 
Bernstein et al. [10] study the computational complex-
ity of communication in decentralised partially observable 
Markov decision processes (DEC-POMDPs).

The potential for communication to improve team-
work in multi-agent systems is discussed in Stone and 
Veloso’s survey of multi-agent learning [74]. As high-
lighted therein, communication can improve team perfor-
mance in multi-agent systems, but has the draw-back of 
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increasing coordination complexity: agents must decide 
when and what to communicate to coordinate their activi-
ties towards achieving a team goal. Roth et al. examine 
heuristics for deciding when to communicate [63] and 
what to communicate [64] in environments where there is 
a cost associated with communication.

The application domains (e.g., RoboCup) considered 
in our investigation are compatible with the COM-MTDP 
model developed by Pynadath and Tambe [58]. This 
model makes communicative acts (viz., saying some-
thing) explicit, and distinguishes them from other action 
types. This is particularly pertinent in our analysis, as the 
effect of explicit communication is the main object of 
study.

Panait and Luke [50], in their survey of the space of 
multi-agent learning, explore scenarios in which agents 
benefit by communicating to solve a collective problem, 
viz., cooperative multi-agent learning.

Becker et al. [9] also investigate the question of when 
to communicate in domains in which there is a cost associ-
ated with communication. They define the net performance 
gain of communication by measuring the value of commu-
nication (VoC) as the difference between the performance 
of a team when agents communicate explicitly and the per-
formance without communication. This approach follows 
Howard’s [32] method of quantifying the value of infor-
mation in decision problems. According to Becker et al., 
agents should engage in communication only when the VoC 
is such that it is expected to improve net team performance.

Gutíerrez et al. [28, 29] study metrics measuring the per-
formance of multi-agent systems. Performance is measured 
by quality of service (QoS) as system responsiveness. The 
approach is based on load-balancing in communication 
networks and concentrates on identifying patterns which 
unevenly balance the communication load in a network of 
agents. QoS, as measured above, is measured as the delay 
in message delivery. This is less of a concern in domains 
such as ours in which, by contrast, uncoordinated commu-
nication can lead to message collisions, which results in 
some messages being lost. In these domains, the propor-
tion of sent messages which arrive safely is an important 
measure.

Chou et al. [19] and Nair et al. [47] study commu-
nication and coordination as applied to emergency 
response settings. The latter explore how dynamic 
reconfigurability of teams can contribute to improved 
performance in environments that require decentralised 
control. Our domain is more dynamic in the sense that 
we have to deal with not only partial information, but 
there are other agents in active opposition. Wu et al. [83] 
have studied the effect of communication on decentral-
ised on-line planning in multi-agent systems which act 
in highly dynamic environments. The domains that they 

study share environmental properties that are common to 
ours.

In domains similar to ours, Candea et al. [16] explore 
the effects of coordination on team performance in 
simulated football. Communication is central to their 
approach. They express their ultimate goal as:

exploiting the use of communication among the 
players to improve team performance, allowing the 
robots to acquire more information, and to self-
organize in a more reliable way.
—Candea et al. [16] (p80)Other recent related 
works in the RoboCup domain include Bai et al. 
[7] who use the celebrated WrightEagle team to 
show the scalability of the MAXQ-OP algorithm for 
effective multi-agent planning and decision-making 
under uncertainty. In addition, Hausknecht et al. 
[31] detail a platform for algorithm experimenta-
tion in multi-agent learning based on the Half Field 
Offence subtask.

Multi-agent coordination potential can also be quanti-
fied indirectly [56, 57], by characterising various inter-
agent communication policies in terms of generic infor-
mation-theoretic properties. Specifically, the complexity 
of the inter-agent communications has been related to the 
potential of multi-agent coordination by estimating the 
epistemic entropy [57] as a precise measure of the degree 
of randomness in the agents’ joint beliefs. Intuitively, the 
system with near-zero epistemic entropy (almost no “mis-
understanding” in joint beliefs) has a higher multi-agent 
coordination potential than the system with near-maximal 
entropy (joint beliefs are almost random). Finally, the 
entropy within the communication space has been traced 
against team performance metrics, showing that phase 
transitions occur in coordination-communication dynam-
ics as well [57].

There are other frameworks relevant to our applica-
tion domain which use radically different methodologies. 
For an investigation into communication in robotic soccer 
using an argumentation-based framework, see Frias-Mar-
tinez et al. [25]. A general information-theoretic treat-
ment of optimal inter-agent communication and the com-
munication efficiency is provided by Prokopenko et al. 
[55] and Salge et al. [65].

1.3  Multi‑agent team networks

Quantitative analysis, including network science methods, 
is increasingly being used in team sports to better under-
stand and evaluate performance [1, 78]. For instance, Fewell 
et al. [24] analysed basketball games as strategic networks, 
where players are represented as nodes and passes as edges: 
the resulting network captures ball movement, at different 
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stages of the game. Their work studies network properties 
(degree centrality, clustering, entropy and flow centrality) 
across teams and positions (roles), and attempts to deter-
mine whether differences in team offensive strategy can be 
assessed by their network properties.

The study of Peña et al. [52] constructed a static–
weighted–directed graph for each team (the passing net-
work), using passing data made available by FIFA during the 
2010 World Cup, with vertices corresponding to players and 
edges to passes. This provided a direct visual inspection of 
a teams strategy and determined the relative importance of 
each player in the game, using different centrality measures,.

Recently, Cliff et al. presented several information-the-
oretic methods of quantifying dynamic interactions in soc-
cer games, using the RoboCup 2D simulation league as an 
experimental platform [22, 23]. These interactions were 
detected information theoretically and captured in two ways: 
via (i) directed networks (interaction diagrams) represent-
ing significant coupled dynamics of the players positional 
data, and (ii) state-space plots (coherence diagrams) showing 
coherent structures in Shannon information dynamics.

In a general sense, the problem of constructing a network, 
given some (partially) observed dynamics, is related to the 
structure learning problem for spatially distributed dynami-
cal systems [37]. As pointed out by Boccaletti et al. [11], 
modelling a partially observable system as a dynamical net-
work presents a significant challenge in synthesising these 
models and capturing their global properties. There are many 
practical problems in this class, related to inferring a spe-
cific network structure, e.g., effective networks in neurosci-
ence [42, 43, 51, 66, 69, 77], multi-agent systems [26, 84], 
dynamical Bayesian networks [18, 21, 27], among others. 
The prominent feature in these approaches is a considera-
tion of both the structural and functional connectivity, and 
the inference of the functional topology based on underlying 
dynamics partially observed from distinct structural nodes.

In Sect. 2, we describe the methods used in this study, 
including communication data generation through multi-
agent RoboCup simulation, and detail statistical analy-
sis techniques applied to the data to infer communication 
(functional) networks based on the performance of a (struc-
tured) team of multiple agents. In Sect. 3, we present the 
communication networks which result from performing 
statistical analysis on the simulation data and analyse these 
results. Finally, in Sect. 4, we comment on further work 
which can eventuate from the presented results.

2  Methodology

Consider a domain in which a set of agents A communicate 
with each other by sending messages each of which may be 
categorised according to some set of message types M. Let 

S be a set of situation types, such that an agent a ∈ A may 
send a message of type m ∈ M in a situation of type s ∈ S.

Let the set of communication contexts (or just contexts 
for short), C, with respect to S and M be the set of all situa-
tion-message pairs: i.e., C = S×M.

2.1  Communication efficiency

2.1.1  General framework

For each context c, and every possible tuple of agent pairs 
(a, b), we associate a real-valued index e ∈ R which meas-
ures the communication efficiency from agent a to agent b , 
with respect to c. The task then is to define for each con-
text c a real-valued partial function ϕc : A× A → R which 
assigns to pairs of agents a and b a real number e = ϕc(a, b) 
representing the efficiency of communication from the first 
agent to the second.

2.1.2  Domain refinement

For the domains considered in this paper, the set of agents, 
A, and the set of message types, M, are finite. Suppose fur-
ther that messages may be sent only in any of some finite 
number of discrete time-steps/cycles, and that an agent 
may send at most one message per cycle. Moreover, sup-
pose that the communication channels are unreliable in the 
sense that messages between agents may get lost, but are 
otherwise transmitted without noise. Under this restriction, 
only finitely many messages may be sent during the period 
under consideration.

Let sc(a) be the total number of messages sent by agent 
a during a given period of time, and let rc(a, b) be the num-
ber of those messages sent by a which were received by 
agent b over the same period. Provided agent a has sent at 
least one message (i.e., sc(a) �= 0); the communication effi-
ciency ϕc(a, b) from agent a to agent b is defined by the 
following:

In other words, the communication efficiency from agent 
a to b is the proportion of messages sent by a which were 
received by b over a given period of time.

For example, if in a certain context over a given period 
of time agent a sent 25 messages, and agent b only received 
18 of those messages, then rc(a, b) = 18 and sc(a) = 25 . 
The communication efficiency during that period is 
ϕc(a, b) =

18
25

= 0.72.
Observe that, in general, rc(a, b) �= rc(b, a), and hence, 

ϕc is not symmetric; i.e., in general, ϕc(a, b) �= ϕc(b, a) . 
Moreover, because each message received by an 
agent must have been sent by another, it follows that 

(1)ϕc(a, b) =
rc(a, b)

sc(a)
.
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0 ≤ rc(a, b) ≤ sc(a). Therefore, for any context c and pair 
of agents a, b, it follows that ϕc(a, b) ∈ [0, 1] ⊆ R.

2.2  Network representation

A system of communicating agents may be represented as a 
weighted network:

where V  is a set of nodes, E is a set of directed links 
between nodes (E ⊆ V × V), and w : E → R is a func-
tion associating a weight to each link. A link between two 
agents represents the communication between the two.

2.2.1  Communication networks

A communication network is defined to be a network in 
which the nodes are agents, i.e., V = A. Moreover, a com-
munication network includes no reflexive links; i.e., for 
each node, v ∈ V , (v, v) /∈ E. This restriction reflects the 
intuition that agents do not send messages to themselves. 
For each context c, define a communication network Nc.

As a further refinement, a communication efficiency net-
work for a given context c is defined to be a communica-
tion network for which the link weights are communication 
efficiencies; i.e., w = ϕc. Because ϕc(a, b) is undefined if 
sc(a) = 0, a further restriction is imposed on communica-
tion efficiency networks that if sc(a) = 0 then (a, b) /∈ E, 
for any b ∈ V .

2.3  Network efficiencies

In the domains under consideration, messages are broad-
cast by each agent to all other agents. Consequently, a 
communication efficiency network includes all possible 
links between nodes (except those which were excluded 
above: i.e., links for which the communication effi-
ciency is undefined and links which are reflexive), that is 
E = {(a, b) ∈ V × V | sc(a) �= 0 & a �= b}.

For each communication network, let the total num-
ber of messages sent by all agents in given context c dur-
ing a given period be denoted Sc; i.e., Sc =

∑
a∈V sc(a).  

Similarly, let the total number of messages received by 
all agents in the same context over the same period be: 
Rc =

∑
(a,b)∈V×V rc(a, b).

In general, each message sent by some agent will be 
received by some subset of the |V | − 1 other agents. If all 
messages broadcast were received successfully by all other 
agents, then the total number of messages received is sim-
ply the product of the total number of messages sent with 
the total number of agents receiving those messages, that is

N = (V ,E,w)

Rc = (|V | − 1)× Sc.

If some messages are lost, then there will be fewer 
total messages received: i.e., Rc ≤ (|V | − 1)× Sc; or 
equivalently

In general, this would imply a reduced network commu-
nication efficiency.

Consequently, the overall efficiency, �, of a communi-
cation network N  is defined as the ratio of all messages 
sent to messages received per agent/node.1 In particular, 
given a context c:

Observe that for any communications network N  , 
it follows that 0 ≤ �(N ) ≤ 1, and that �(N ) = 1 iff 
R = (|V | − 1)× S.

2.4  Application domain: football simulation

The specific application domain for this project was the 
RoboCup 2D simulator [17]. The agents were players 
(i.e., |A| = 11) and the period was the duration of a match, 
comprising 6000 discrete match cycles. In Table 1, we 
specify the player role matched with their number.

Attention was restricted to three message types:

•	 pass messages (p) which contain the intended receiv-
er’s player number and the pass’s destination;

•	 ball messages (B) which contain information about the 
position and velocity of the ball; and

•	 three-player messages (R) which contain information 
about three players (teammates or opponents).

Situations are classified according to two criteria:

•	 ball possession status: our team in possession of the 
ball (BPT) or opposition team in possession (BPO);

•	 field location status: ball in our team’s front half (FH) 
or ball in our back half (BH).

Rc

(|V | − 1)× Sc
≤ 1.

1 Excluding the message’s sender.

(2)�(Nc) =
Rc

(|V | − 1)× Sc
.

Table 1  Roles matched with specific player numbers

Role Assigned number(s)

Goalkeeper {1}

Defence {2, 3, 4, 5}

Mid-field {6, 7, 8}

Attack {9, 10, 11}
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The domain-specific elements for the simulator are sum-
marised in Table 2.

For example, a match situation in which the yellow 
team (via player yellow #10 at the bottom-right) is in 
possession of the ball in their front half (i.e., a situation 
of type BPT-FH) is shown in Fig. 1.

The contexts in C are comprised of combinations of 
message and situation types: e.g., p-BPT-FH, R-BPO-BH, 
etc.

2.5  Data generation

Each match played on the simulator generates logs of all 
player actions and events, including communication prim-
itives (say and hear). The agent/player code is agent2d: 
the well-known base code developed by Akiyama et al. 
[5], slightly modified to generate additional data about 
each match situation: possession (categories BPT and 
BPO) and field location (categories FH and BH). These 
data were used to calculate sc and rc values, and ulti-
mately communication efficiencies for each pair of agents 
as determined by (1). For each match communication, 

efficiency networks were constructed for each context, 
and the overall network efficiency was computed accord-
ing to (2). We stress that in practice communication 
efficiencies generated through agent2d are not function-
ally predetermined by specific contexts, each of which 
describes a broad class of instances, varying in terms of 
the urgency of communications. Furthermore, commu-
nication efficiency may significantly differ for any given 
context due to inherent sensor and actuation noise, frag-
mentation of simulated sensor fields, and incompleteness 
of available data.

2.6  Performance measures

The team being analysed was initially matched against 
an identical opponent. Due to the stochastic nature of the 
simulator’s match model, variability in the match outcomes 
across matches was observed.

To assess overall team performance, several team per-
formance measures were recorded for each match:

•	 goals scored: the number of goals scored by the team 
during a match;

•	 goals conceded: the number of goals conceded by the 
team during a match; and

•	 goal difference: the difference between goals scored and 
goals conceded.

One thousand (1000) matches were played and goals 
scored and goal conceded for the team were recorded, from 
which the goal difference was derived. For the remainder of 
this work, we interchangeably refer to these three perfor-
mance measures as:

In Fig. 2, we give the densities of the three performance 
measures for the 1000 simulation runs. As both simulated 
teams are equally matched, we find no surprise that both 
the goals scored and goals conceded densities are very 
similar, and the goal difference density is approximately 
normal.

2.7  Regression analysis of the data

Our main results and corresponding narrative are derived 
from statistical exploration of the data derived from the 
baseline team settings. Specifically, for the 1000 games 
simulated, we perform multiple linear regression [45], 
attempting to explain the independent performance meas-
ures of goals scored/goals conceded/goal difference, 
using a simple linear relationship involving the commu-
nication efficiencies ϕc(a, b). Thus, for each of the four 

(3)
P1 ≡ goals scored, P2 ≡ goals conceded,

P3 ≡ goal difference.

Table 2  Domain classes and elements

Class Description Elements

A Players 1, 2, . . . , 11

M Message types p, B, R

S Situation types BPT-FH, BPT-BH,

BPO-FH, BPO-BH

Fig. 1  Match situation
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possible situations listed in Table 2, we construct the fol-
lowing linear relationship:

which maximises the correlation with Pi. BIC in the sum-
mation over players a and b indicates that candidate con-
nections used to build the linear model are chosen using 
Bayesian Selection Criterion (BIC) [67]. Although many 
have taken the position that the alternative Akaike Infor-
mation Criterion (AIC) [4] is superior in model selection 
to BIC (refer to [2, 79] for examples), we found that, 
although applying AIC reported higher correlations, a 
significant proportion of communication efficiencies had 
coefficient estimates β which were not statistically sig-
nificantly different from zero. Hence, we opted to apply 
BIC for model selection.

To the best of our knowledge, the method of measuring 
inter-agent communication efficiencies over multiple simu-
lation runs and applying linear regression to correlate with 
performance measures to expose the statistically meaning-
ful links is new in the literature. The method is relatively 
simple and intuitive to grasp, with the ability to be per-
formed with most simulation engines as although we spe-
cifically use agent2D to generate the data, we effectively 
treat it as a ‘black box’. The actual communication pro-
tocol of agent2D typically rotates the sender agent across 
all 11 team players over 11 cycles interval (in a predefined 
order synchronised by the current game cycle number). 
However, some players may choose to communicate ‘out 
of turn’ in exceptional circumstances when the available 
data warrants some urgency, e.g., a player is near the off-
side line. In addition, each player may choose to receive 
messages only from a specific sender, by temporarily 

(4)
Pi =

∑

m∈M

11∑

a, b ∈ BIC

a �= b

β
(m)
a,b ϕ

(m)
c (a, b), i ∈ {1, 2, 3}

setting its attention variable, again under specific condi-
tions. All such exceptions depend on a set of pre-pro-
grammed conditions that may be met at a given cycle, and 
varying such conditions, by modifying the corresponding 
numerical threshold parameters, would result in changing 
the communication protocol, modifying the ‘black box’. 
We will briefly discuss such modifications, each constitut-
ing a separate design point, in our conclusions.

It is our hope that other agent-based model research 
teams, whether in RoboCup or in more general applica-
tions, see the utility in our method as a means of expos-
ing important and possibly counterintuitive communica-
tions which correlate with performance. It is important 
to note, however, that although we do report correlation 
values, we are not fixated on obtaining the maximal value 
of correlation to obtain a predictive linear model. Rather, 
our aim is to establish the underlying meaning and motifs 
behind statistically significant communication links.

3  Results and discussion

We perform multiple linear regression on the communica-
tion data for each of the situations in Table 2. However, 
we have disallowed any communication received by the 
goalkeeper, i.e., b �= 1 in Eq. (4). This is due to statistical 
artefacts dominating correlation scores after the scoring of 
goals.

Before we present our findings of the regression analy-
sis in their entirety, we shall begin with the situation BPO-
BH, concentrating on the performance measure of goal 
difference presented in Table 3 and discuss some necessary 
subtleties.

The t-ratio in Table 3 is the estimate of the coefficient 
β, divided by the standard error associated with the esti-
mated coefficient (for more information, refer to [45, 76]).  

Fig. 2  Densities of the perfor-
mance measures for the 1000 
simulated games
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Importantly, the t-ratio determines the statistical signifi-
cance of each coefficient estimate, and an absolute value 
greater than 1.96 equates to the coefficient being different 
from zero with greater than 95% confidence. As explained 
in Sect. 2.7, we opted to apply BIC instead of AIC for 
model construction mainly due to the fact that the applica-
tion of AIC leads to a significant proportion of coefficient 
estimates β having t-ratios less than 1.96—hence not statis-
tically significantly different from zero. In Table 3, we can 
see that only one coefficient estimate has such a t-ratio.

In addition, it is important to highlight the difference 
between positive and negative coefficient estimates in 
Table 3. Positive estimates mean that the linear model 
predicts an increase/decrease in performance if the com-
munication channel corresponding to the estimated 

coefficient increases/decreases efficiency. Conversely, 
negative estimates mean that the linear model predicts 
a decrease/increase in performance if the communica-
tion channel corresponding to the estimated coefficient 
increases/decreases efficiency.

3.1  Network representations: individual situations

We now present the full results of the regression analy-
sis in the form of network diagrams. Starting with the 
situation BPO-BH in Fig. 3, we note that communica-
tions with positive coefficient estimates are shown as 
solid lines, and negative coefficient estimates are shown 
as dashed lines. In addition, interpreting the goals con-
ceded graph needs care; solid edges (positive coefficient 
estimates) correlate to goals being conceded, which is a 
traditionally counter intuitive way of thinking about per-
formance. We also note that for each graph, we give the 
R2 (the Pearson correlation squared) value, which meas-
ures the percentage of variation in the data captured by 
the linear model.

Focusing on goals scored as the performance measure 
in Fig. 3, we see that communications with positive cor-
relations are almost exclusively with agents over a long-
distance (e.g. 11 → 4, 10 → 5), indicating that useful data 
are being transferred to recipients which is outside of their 
field of view. The obvious counter example to this is player 
11, the centre-forward, communicating with mid-fielders 6 
and 8. For goals conceded, only connections with negative 
coefficient estimates are present. In addition, there is visu-
ally no correlation between goals conceded and goal differ-
ence for this situation, i.e., no links in one graph are pre-
sent in the other. However, there is quite good agreement 
between goals scored and goal difference.

Table 3  Results from performing multiple linear regression (apply-
ing BIC) with the independent performance measure of goal differ-
ence (P3) in the situation BPO-BH

m a b β
(m)
a,b

Std. error t-ratio

B 11 6 8.04 1.52 5.30

B 3 5 −5.39 1.16 −4.65

R 11 4 5.48 1.43 3.84

R 11 2 5.16 1.46 3.53

R 7 8 4.17 1.20 3.46

B 2 5 −8.45 2.67 −3.16

R 10 4 3.65 1.17 3.13

R 1 3 −3.20 1.09 −2.94

B 11 5 4.96 1.85 2.68

B 1 5 −3.36 1.26 −2.68

B 2 3 −6.12 2.39 −2.56

B 4 10 1.95 1.09 1.79
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Fig. 3  Graphical representation of performing regression in the situation BPO-BH for all performance measures. Note that goal difference cor-
responds to the data in Table 3 and thin edges represent statistically insignificant links



365Artif Life Robotics (2017) 22:357–373 

1 3

We also notice that the majority of communications from 
defenders and the goalie are negatively correlated with per-
formance, possibly due to the received information quickly 
becoming obsolete. The converse statement is also true: that 
the majority of communications from mid-fielders and for-
wards are positively correlated with performance. This phe-
nomenon is likely due to agents reporting changes in ball 
and player positions (likely during opponent’s passes) and 
hence enabling better ball interceptions and counter-attacks.

Finally, in goals conceded, we notice a two-hop motif 
(7 → 11 → 3, 7 → 11 → 2, and 6 → 8 → 5) which pos-
sibly improves the quality of data, about the ball and 
other players, coming to the defenders.

For the situation BPT-BH in Fig. 4, we now see the 
appearance of message type p, associated with pass-
ing, in the networks. In addition, we also see that the 
graph for goal difference contains a proportion of links 
which appear in both goals scored (3 → 10 p) and goals 

conceded (9 → 10 R for instance), unlike the previous 
situation. We also see that goals conceded has the highest 
R2 and is the only performance measure which does not 
contain disconnected clusters.

In goals scored, there is a motif of long-distance 
communications, 1 → 11, 4 → 8, and 3 → 10, carry-
ing data about the ball and players which are likely to 
be outside of the recipient’s field of view, and helping 
to build-up a counter-attack. For negatively correlated 
B communications in goals conceded, the short-range 
chain motifs (9 → 11, 4 → 7 → 6 → 8 → 3 → 5 → 6 
and 4 → 7 → 8 → 3 → 5 → 6) help teammates to keep 
possession of the ball. A general trend across all perfor-
mance measures for this situation is that communications 
sent by forwards are not helpful as they possibly conflate 
data about ball possession.

Focusing on Fig. 5 which presents the situation BPO-
FH, we note that this example has some of the lowest 
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Pearson correlation values. Specifically, we notice that 
the BIC algorithm has failed to detect any meaningful 
correlation between communication efficiencies between 
agents and goals conceded. From the other two perfor-
mance measures, we can see that, generally, communica-
tion is not beneficial for this situation.

In Fig. 6, we present the situation BPT-FH. Focusing on 
goals scored, we can see just how little communication effi-
ciency seems to correlate with this performance measure. 
This result is not entirely surprising given the simplicity of 
the scoring tactics used by the agent2d team (employing 
the 4-3-3 formation, with three mid-fielders, and three for-
wards, and being dominated by side crosses). Specifically, 
however, the positive 5 → 11 link for this measure may 
help the centre-forward stay onside.

For goals conceded we see that there are some ben-
eficial communication motifs to defenders and mid-field-
ers (8 → 5, 5 → 8, 10 → 3, 6 → 7, and 9 → 2) which 
improve data quality and may help to prevent opponents’ 
counter-attacks. The beneficial links 8 → 10 and 3 → 11 
for goals conceded also suggest that forward agents 
are contributing to preventing counter-attacks from the 
opposing team. Correspondingly, the mid-range commu-
nications amongst defenders (2 → 5 and 3 → 4) in goals 
conceded are negatively correlated with performance, 
indicating that they are potentially enabling poor quality 
passes via propagation of out-dated players’ positions.

Finally, focusing on goal difference, there is a gen-
eral trend that lateral communications across the field 
(e.g. 3 → 4, 5 → 9) are negatively correlated with per-
formance, and longitudinal communications up the field 
(e.g. 9 → 2, 4 → 7) are positively correlated.

In general, BPO-BH has highest R2 for goals scored, 
this may seem surprising due to this situation being the 

most defensive. However, a sizable proportion of goals 
are scored as a consequence of a contest between two 
players won by the defending team; the team’s forwards 
playing on the sides (wing-forwards) very quickly posi-
tion themselves to receive the ball, and progress to make 
a cross resulting in scoring a goal. If we contrast this 
result with goals scored in BPT-FH, which has negligible 
R2, and few network links, we can conclude that commu-
nication contributes very little to goal-scoring while in an 
attacking situation.

In addition, we see that BPT-BH has the highest R2 for 
goals conceded. This shows that, when the players are in 
relatively defensive situations, maintaining possession is 
crucial to prevent the goals scored by the opposing team. 
Contrasting this with goals conceded in BPO-BH, the 
most defensive situation, which has a small R2 and few 
connections, we can conclude that communication con-
tributes very little to conceding goals in the most defen-
sive situation.

3.2  Network representations: all situations

We now perform regression analysis on all the communi-
cation data, regardless of situation, presented graphically 
in Fig. 7. Due to the larger amount of links that are being 
accepted by the BIC algorithm, it is necessary to split the 
links with +ve and −ve coefficient estimates in separate 
networks.

Focusing on goals scored, for the top-left graph, over half 
of the links are derived from the situation BPO-BH, with 
twice as many message type R links as there are B links. 
Interestingly, we see no appearance of message type p in 
this graph. The corresponding graph in the bottom-left, giv-
ing -ve coefficient estimates also has the majority of its links 
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derived from the situation BPO-BH. This time, we have four 
times as many message type B links as there are R links for 
this situation—the reverse of the corresponding +ve esti-
mate graph. This time, however, we have two links (7 → 2 
and 10 → 11) for message type p implying that communi-
cations about passing are largely detrimental to scoring.

For goals conceded, the top-middle graph only contains 
three types of links: B-BPT-BH, R-BPT-BH, and R-BPT-
FH. The -ve coefficient estimate graph in the bottom-
middle is much more complicated; nevertheless, looking 
at both graphs together, we can conclude that more R-type 
communication whilst in possession of the ball (BPT) cor-
relates with more goals being conceded. Looking at the 
corresponding -ve estimate graph, we can make the equiva-
lent claim that less type B communications in situations 
BPT-BH and BPT-FH correlate to less goals being con-
ceded. This is due to the graph consisting of over 80% of 
these (B) types of communication links.

Finally, for goal difference, we can see that when the 
opponent has possession of the ball (BPO) in the top-right 
graph, all but one of the links correlating with perfor-
mance are of message type R. Likewise, when in posses-
sion of the ball (BPT), all but one of the links are of mes-
sage type B. These two results distinguish the importance 
of these two message types based on who has ball pos-
session. For the corresponding −ve coefficient estimate 
graph on the bottom-right, we can see that the majority 
of links are derived from the back half (BH) and are of 
message type B, indicating the communication about 
the ball while in the back half negatively correlates with 
performance.

For the majority of the graphs in Fig. 7, we largely see 
that communications from the defenders is not beneficial. 
In addition, communications to the centre mid-field (player 
6) are not beneficial. Nevertheless, communications to 
the forwards are generally useful for scoring, as are the 
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communications to the defenders from the mid-fielders and 
forwards.

3.3  Aggregation of players roles: principal components

In this section, we again give network representations 
of multiple linear regression analysis, but instead of 
considering communications between individual play-
ers, we first aggregate players in terms of their role 
(defenders: Defence, mid-fielders: Mid-field, and for-
wards: Attack). For each message M and situation S type, 
we group both sender and receiver in terms of player 
roles, as shown in Table 1. As an example, the group-
ing for {sender, receiver} = {Defence,Mid-field} is the 
subset of communication efficiencies, ϕ(m)

c (a, b) with 
a ∈ {2, 3, 4, 5} , b ∈ {6, 7, 8}. Thus, for each specific mes-
sage and situation type, we obtain 12 different subsets 
of sender–receiver groupings (recall that we discount 
the goalkeeper as a message receiver due to statistical 
artefacts).

We then reduce the dimension of each aforementioned 
grouping to one through performing principal compo-
nents analysis (PCA) [36] to each grouping, and only 
keeping the component which contains the most variance 
(the principal component). Through performing dimen-
sional reduction in this way,2 we obtain an aggregated 
communication efficiency which is most representative of 
the original data as it has the highest possible variance. 
Thus, for each message and situation type, we reduce our 
original data down to 12 aggregated communication 
efficiencies.

Finally, for each situation type, we perform regression 
on this aggregated data against each of the performance 
measures Pi, i ∈ {1, 2, 3}. We give an example in Table 4 
for the situation BPO-BH and performance measure of 

2 One alternative procedure which would maximise correlation 
would be to perform regression to each grouping against the perfor-
mance measures Pi.

goal difference, which is the aggregated equivalent to 
what was presented in Table 3.

Starting with the situation BPO-BH in Fig. 8, we note 
the appearance of self-loops for the first time. Focusing on 
goals scored, we see that type R communications amongst 
forwards negatively correlate with performance. Interest-
ingly, referring back to the corresponding graph in Fig. 3, 
there were no −ve coefficient estimates amongst the for-
ward grouping, indicating that this new phenomenon is a 
result of the PCA procedure combined with the BIC algo-
rithm. Nevertheless, the self-loop amongst the mid-fielders 
in the goals conceded graph is visible in the corresponding 
graph in Fig. 3.

For goal difference, although it visibly correlates quite 
well with goals scored (containing no links from goals 
conceded), the links Goalie → Attack and Mid-field → 
Defence are not present in the corresponding graph in 
Fig. 3. This indicates that even though the individual 
player-to-player communication links are not significant, 
the role-to-role aggregation provided by PCA shows these 
links in a new light and exposes their worth.

For the situation BPT-BH in Fig. 9, we see that message 
type p does not feature, which is a departure from Fig. 4 
when performing regression on individual players. We also 
see that the graph for goal difference contains some links 
which appear in both goals scored (Attack → Defence) 
and goals conceded (Mid-field → Mid-field for instance), 
unlike the previous situation in Fig. 8. Similar to the previ-
ous situation, however, certain links are present in all three 
graphs (Goalie → Defence in goals scored for instance) 
which are not present in corresponding graphs in Fig. 4: 
a result of the PCA procedure. Thus, although individual 
links from the goalkeeper to the defenders are deemed sta-
tistically insignificant, the sum of these links through the 
PCA aggregation procedure now appears as significant. 
We do not show the results for the situations BPO-FH and 
BPT-FH as the correlations are small and the graphs are 
quite sparse.

Finally, in Fig. 10, we give the graphs obtained through 
performing regression on all the aggregated communica-
tion data, regardless of situation. In general, we see that 
these networks paint a similar picture to what was noted 
in Fig. 7. Focusing on goals scored, most of the links are 
from situation BPO-BH. For the +ve coefficient estimates, 
most are again of message type R. For the −ve coefficient 
estimates, however, we now have a more even mix of mes-
sage types B and R.

For goals conceded, we see that there are only messages 
B-BPT-BH and R-BPT-BH correlating positively with per-
formance. For the −ve coefficient estimates, all but one 
of the messages relate to having ball possession (BPT). 
In addition, as there are no type R-BPT messages nega-
tively correlated with performance, we can draw the same 

Table 4  Results from performing regression (applying BIC) with the 
independent performance measure of goal difference (P3) in the situ-
ation BPO-BH on aggregated data

m Sender Receiver β(m) Std. error

B Attack Mid-field 0.26 0.04

R Goalie Defence −0.29 0.05

R Mid-field Defence 0.19 0.04

R Attack Defence 0.17 0.04

R Goalie Attack 0.18 0.06
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conclusion as the corresponding graph in Fig. 7; that more 
type R communication whilst in possession of the ball cor-
relates to more goals being conceded.

Finally, upon visual inspection of the graph presented 
in goal difference, we can see that it correlates very well 

to the difference of the previous two performance measure 
graphs. The only departure to this being Goalie → Attack 
−ve B-BPT-BH (which does not appear in the correspond-
ing graph in Fig. 7) and Attack → Defence +ve R-BPT-FH 
(which does appear in Fig. 7).
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Fig. 8  Graphical representation of performing aggregated regression in the situation BPO-BH for all performance measures. Note that goal dif-
ference corresponds to the data in Table 4
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Fig. 9  Graphical representation of performing aggregated regression in the situation BPT-BH for all performance measures
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4  Conclusions and future work

In this exploratory study, we measured the inter-agent com-
munication efficiencies and performance measures from 
multiple runs of RoboCup Soccer Simulation 2D League. 
From these data, we generated agent communication net-
works, for different situations S and message types M, 
through performing multiple linear regression of the commu-
nication data against the performance measures. These func-
tional networks enabled us to determine the player-to-player 
communications which correlated (positively and negatively) 
the strongest with the corresponding performance measure. 
Visual inspection of these networks revealed relevant motifs 
which highlight player tactics contributing to performance of 
a structured team comprising multiple agents.

Thus, the study analysed both the structural and func-
tional connectivity, and offered a method for deriving func-
tional communication networks, for various situation types 
and structured agent roles, based on the underlying com-
munication data correlated with the overall performance. In 
other words, the functionality is defined directly in terms of 
overall team performance, and so, the topology of the result-
ant functional networks is dependent on the global outcomes. 
One immediate utility of our technique is its ability to expose 
counterintuitive motifs; for example, during BPO-BH, 

communication between defenders and the goalie is nega-
tively correlated with performance, whereas communications 
between mid-fielders and forwards are positively correlated.

Furthermore, through utilising PCA on the data to 
aggregate the players into roles, the corresponding net-
works enabled us to determine the macroscopic role-to-
role communications which correlated with performance. 
Though largely reinforcing the narrative generated by 
the player-to-player networks, visual inspection of the 
macroscopic networks also revealed some interesting 
communications, mostly with the goalkeeper, which 
only appear due to the aggregation of players into roles. 
This shows that although individual player links may be 
deemed statistically insignificant on their own, the true 
worth of the links only appears when roles are aggre-
gated through PCA, or some equivalent technique.

It is our hope that the analysis presented in this work, 
which attempts to expose the non-trivial links between 
communication and performance in a multi-agent-based 
setting, will be used as a platform for future studies in 
this area. Specifically, the communication protocol and its 
thresholds are controlled in agent2D by numerical global 
input parameters. An obvious follow-up study would 
include generating, and comparing, communication data 
for simulation runs through a systematic variation of these 
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Fig. 11  Cumulative average of goal difference for six different design points over 1000 simulated games. Note that the baseline design point 
(blue) is the one explored in this work
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global input parameters (akin to a data-farming experi-
ment, where particular input parameter combinations 
are referred to as design points [20]). In Fig. 11, we offer 
the cumulative average of goal difference for six differ-
ent design points, where we have varied the global input 
parameters of the home team, which changes various com-
munication policies and protocols. We note that the base-
line design point was focused in this work. A systematic 
data-farming experiment would allow an optimisation of 
these global communication variables against performance 
measures.

This would be an obvious avenue of generating more 
effective communication policies and protocols amongst 
the players. Indeed, it is our intent that the methodology 
detailed in this work be applied by various RoboCup teams 
as a means of highlighting important communication links, 
and generating more effective inter-agent coordination. 
It would also be of interest to perform similar analysis on 
other adversarial multi-agent-based simulators where com-
munication is paramount to performance [33]. In such a 
study, with potentially many more agents under considera-
tion, the corresponding networks would be more compli-
cated, thus requiring more sophisticated forms of analysis 
(such as understanding the narrative generated from social 
network analysis metrics [80]) to expose the communica-
tion motifs. In addition, in scenarios involving significantly 
more agents, performing PCA to expose macroscopic com-
munication links between relevant functions may yield 
more utility than seen in this work as they would enable the 
possibility of effective visual inspection.

Finally, although our technique performed multiple lin-
ear regression on the communication efficiencies against 
performance, most information-theoretic measures typi-
cally use some variants of entropy and hence are nonlinear. 
Another follow-up study would involve determining some 
nonlinear transform of the communication data which 
meaningfully increased the Pearson correlation values with 
performance measures.
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