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Abstract

In this paper we propose and verify spatiotemporal mea-
sures of coordination in a modular robotic system. These
information-theoretic measures estimate the generalized
“correlation entropy”K2 and the generalized excess entropy
E2 computed over a multivariate time series of actuators’
states, while standard deviation ofE2 is minimized over both
space and time. Actuators are shown to be well-coordinated
in individuals with fastest locomotion. These results sup-
port our conjecture that direct fitness functions can be ap-
proximated with generic selection pressures, leading towards
information-driven evolutionary design.

Introduction
Modular Robotics is one of the most rapidly growing appli-
cations of Artificial Life, supported by advances in sensor
and actuator technologies, multi-agent control theory, and
studies of self-organisation. Robots built of several similar
building blocks (modules) are attractive due to high versatil-
ity in their shapes, locomotion modes, tasks, and manipula-
tion abilities (Bojinov et al., 2002; Yim et al., 2003; Tanev
et al., 2005; Tanev, 2005; Dorigo, 2005). This multi-faceted
versatility increases robustness, adaptability, and scalability
required in many practical systems, ranging from search and
rescue to space exploration. These requirements are often
observed in biological systems. Unlike traditional engineer-
ing and robotic systems which are often brittle and inflex-
ible, such systems are not assembled out of separately de-
signed parts attached together at a later stage — they co-
evolve (Goldsmith and Miller, 2003). The result is a sym-
biotic scalable system where components can be reused for
other purposes and take on multiple roles, increasing robust-
ness and adaptivity on multiple levels: from a cell to an ant
colony to social systems.

One principled way to address these requirements is to
distribute sensing, actuation and computational capabilities
throughout the modular robotic system to form a complex
multi-agent network, enabling the desired responses to self-
organize within the complex system, without central control.
The main challenge is a design methodology for system-
atically inter-connecting a set of global system-level tasks,

functions, etc. with sensors, behaviours, and actuators of
localized agents. Such a methodology should enable a
co-evolution of multiple agents (robotic modules, network
nodes, swarm elements, etc.), fitting the selection criteria.
An example of a selection pressure is the acquisition of in-
formation from the environment: there is some evidence that
pushing the information flow to the information-theoretic
limit (i.e., maximization of information transfer) can give
rise to intricate behaviour, induce a necessary structure in
the system, and ultimately be responsible for adaptively re-
shaping the system (Klyubin et al., 2004; Klyubin et al.,
2005). A comprehensive approach, nevertheless, should in-
clude multiple design/selection pressures, including: stabil-
ity of multi-agent hierarchies (Prokopenko et al., 2005b);
robustness or “noise rejection” (El-Samad et al., 2005); ef-
ficiency of perception-action loops (Klyubin et al., 2004);
efficiency of computation (computational complexity); ef-
ficiency of communication topologies (Prokopenko et al.,
2005a); efficiency of locomotion and distributed actuation
(Der et al., 1999; Tanev et al., 2005; Tanev, 2005). Each
of these pressures can be represented in two ways — ei-
ther via task-specific objectives or via generic information-
theoretic fitness functions. Direct evolutionary compu-
tation using task-specific objectives is now a typical ap-
proach, and the solutions obtained by this method reflect
success of hand-crafting fitness functions by human design-
ers. We propose here another methodology:information-
driven evolutionary design, which uses fitness functions ac-
cording to generic information-theoretic criteria, e.g., mini-
mization of the variance of the rule-space’s entropy (Wuen-
sche, 1999; Prokopenko et al., 2005b), maximization of in-
formation transfer in perception-action loops (Klyubin et al.,
2004; Klyubin et al., 2005), minimization of Boltzmann en-
tropy in swarm-bots’ states (Baldassarre et al., 2005), etc.
The solutions obtained by information-driven evolution can
be judged by their degree of approximation to the direct-
evolution results. A good approximation will indicate that
the chosen criteria capture the information-theoretic core of
selection pressures, leading to “taskless adaptation”. The
identification of possible intrinsic fitness criteria is related



to the work of Deret al. on self-organization of agent be-
haviors from domain-invariant principles, e.g., homeokine-
sis (Der et al., 1999).

This paper models one specific step towards a compre-
hensive approach to information-driven evolutionary design:
information-theoretic measures of coordination in a mod-
ular robotic system. In order to study such measures in
a transparent way, without obscuring it with other aspects
such as sensing, computation, etc., we select a sufficiently
simple system: a modular limbless, wheelless snake-like
robot (Snakebot) (Tanev et al., 2005; Tanev, 2005) with-
out sensors. The only design goal of Snakebot’s evolution,
reported by Tanev and his colleagues (Tanev et al., 2005;
Tanev, 2005), is fastest locomotion. Our immediate goal is
information-theoretic approximation of this direct evolution.
Specifically, we construct measures of spatiotemporal coor-
dination of distributed actuators used by a Snakebot in lo-
comotion. The measures are based on the generalized “cor-
relation entropy”K2 (a lower bound of Kolmogorov-Sinai
entropy) and its excess entropyE2 computed over a multi-
variate time series of actuators’ states. Studying entropy dy-
namics of over space and time allows us to identify Snake-
bots with most coordinated actuators. Our experiments con-
firmed that maximal coordination (measured information-
theoretically) is achieved synchronously with fastest loco-
motion (a direct measure).

The following Section briefly reviews some relevant back-
ground results in modular robotics. Section describes the
Snakebot and the proposed measures, followed by experi-
mental set-up and evolution-tracing results (Section ), and
conclusions (Section ).

Background and Motivation
Several control algorithms for metamorphic robotic systems
capable of spatial reconfiguration, exemplifying the use of
emergent behaviour, are described by Bojinovet al. (Boji-
nov et al., 2002): the multi-agent control achieves suitable
reconfiguration as a “side-effect” of creating a structure with
the properties (structural, morphological, etc.) required for
a global task. Their agents (modules) have limited com-
putational capabilities, communicating only with immediate
neighbors, and using local rules to produce adequate multi-
agent control algorithms. Dorigo (Dorigo, 2005) describes
an experiment in swarm robotics (SWARM-BOT) which
also complements standard self-reconfigurability with task-
dependent cooperation. Small autonomous mobile robots (s-
bots) physically aggregate into specific shapes enabling the
collective structure (a swarm-bot) to perform specific func-
tions beyond capabilities of a single module. The swarm-
bot forms as a result of self-organization “rather than via
a global template and is expected to move as a whole and
reconfigure along the way when needed” (Dorigo, 2005).
One basic ability of a swarm-bot, immediately relevant to
our research, iscoordinated motionemerging when the con-

stituent independently-controlled modules coordinate their
actions in choosing a common direction of motion.Loco-
motionis an essential skill in biological organisms, typically
defined (e.g., Wikipedia) as “self-powered, patterned motion
of limbs or other anatomical parts by which an individual
customarily moves itself from place to place”. Our focus,
motivated by studies of coordination in a modular robotic
system, is on how much locomotion can indeed be “pat-
terned” in an aggregated structure.

Regardless of an environment (aquatic, terrestrial or
aerial), locomotion is achieved by applying forces generated
by the rhythmic contraction of muscles attached to limbs,
wings, fins, etc. It was observed that typically, a locomo-
tory gait is efficient when all the involved muscles contract
and extend with the same frequency and different phases
(Bourquin, 2005). For example, Yimet al. (Yim et al.,
2003) investigated a snake-like (serpentine) sinusoid gait,
where forward motion is essentially achieved by propagating
a waveform travelling down the length of the chain. Tanev
and his colleagues (Tanev et al., 2005; Tanev, 2005) demon-
strated emergence of side-winding locomotion (defined as
locomotion predominantly perpendicular to the long axis of
a snake-like modular robot, described in the next section),
providing superior speed characteristics for considered mor-
phology as well as adaptability to challenging terrain envi-
ronments and partial damage.

Ijspeertet al. (Ijspeert et al., 2005) systematically studied
salamander locomotion for a number of gaits. The swim-
ming is based on “axial undulations in which rostrocaudal
waves with a piece-wise constant wavelength are propagated
along the whole body with limbs folded backwards”. On
ground, the salamander uses the stepping gait, with the body
making S-shaped standing waves with nodes at the girdles,
while the limbs are coordinated with the bending of the body
to increase the stride length. Sometimes, for instance when
trying to rapidly escape in grass, the salamander uses crawl-
ing (a serpentine gait with limbs folded against the body) as
a third locomotion mode. Ijspeertet al. considered a num-
ber of scenarios where oscillations in a multi-segment chain,
starting from random initial states, rapidly evolve to travel-
ling or/and standing waves. This work related salamander
locomotion to coordinated patterns of rhythmic neural ac-
tivity, concluding that “from a dynamical systems point of
view, locomotion becomes the limit cycle behavior of the
controller-body-environment system” (Ijspeert et al., 2005).
This is particularly interesting in a multi-agent dynamical
system such as a modular robot, where locomotion is a result
of modules’ self-organisation. Is it then possible to capture
the relation between locomotion and rhythmic inter-modular
coordination via spatiotemporal measures?

Before presenting our approach to this question, we note a
related investigation of Baldassarreet al. (Baldassarre et al.,
2005), who characterized coordinated motion in a swarm
collective as a self-organized activity, and measured the in-



creasing organization of the group on the basis of Boltz-
mann entropy. This study had the goal of clearly identify-
ing and quantitatively describing the specific self-organizing
mechanisms operating within modular robotic systems such
as swarms. In particular, the emergentcommon direction
of motion, with the chassis orientations of the robots spa-
tially aligned, allows the group to achieve high coordina-
tion. Baldassarreet al. proposed a method to capture this
spatial alignment via Boltzmann entropy — by dividing the
state space of the elements of the system (modules) into
cells (e.g., cells of45◦ each, corresponding to chassis ori-
entations), measuring the number of elements in each cell
for a given macrostatem, computing the numberwm of mi-
crostates that composem, and calculating Boltzmann en-
tropy of the macrostate asEm = k ln[wm], wherek is a scal-
ing constant. This constant is set to the inverse of the maxi-
mum entropy which is equal to the entropy of the macrostate
where the all elements are equally distributed over the cells.
The results indicate that, “independently of the size of the
group, the disorganization of the group initially decreases
with an increasing rate, then tends to decrease with a de-
creasing rate, and finally reaches a null value when all the
robots have the same orientation” (Baldassarre et al., 2005).

In this work, we attempt to advance from a purely spatial
characterization (such as Boltzmann entropy of a macrostate
distributing chassis orientations over the cells) to a spa-
tiotemporal measure. The entropy measure proposed in our
work is intended to capture not only spatial alignment of dif-
ferent modules, but account also for temporal dependencies
among them, such as travelling or standing waves in multi-
segment chains observed by Ijspeertet al.. Since we intend
to use this measure in the information-driven evolution as a
(partial) fitness function, it should ideally inter-relate spatial
and temporal components.

Spatiotemporal Coordination of Actuators
Snakebot is simulated as a set of identical spherical mor-
phological segments (“vertebrae”), linked together via uni-
versal joints. All joints feature identical (finite) angle lim-
its, and each joint has two attached actuators (“muscles”).
In the initial, standstill, position of Snakebot the rotation
axes of the actuators are oriented vertically (vertical actu-
ator) and horizontally (horizontal actuator). These actua-
tors perform rotation of the joint in the horizontal and ver-
tical planes respectively. No anisotropic (directional) fric-
tion between the morphological segments and the surface is
considered. Open Dynamics Engine (ODE) was chosen to
provide a realistic simulation of the mechanics in applying
forces to the segments of Snakebot. Given this representa-
tion, the task of designing the fastest Snakebot locomotion
can be rephrased as developing temporal patterns of desired
turning angles of horizontal and vertical actuators for each
joint, maximizing the overall speed. Previous experiments
of evolvable locomotion gaits with fitness measured as ei-

Figure 1: The dark trailing circles show the trajectory of the
Snakebot’s center of mass.

ther velocity in any direction or velocity in forward direction
(Tanev et al., 2005) indicated that side-winding locomotion
— locomotion predominantly perpendicular to the long axis
of Snakebot (Figure 1) — provides superior speed character-
istics for the considered morphology of Snakebot (inspired
by the efficient side-winding locomotion of the rattlesnake
Crotalus cerastes). The actuators states (horizontal and ver-
tical turning angles) are constrained by the interactions be-
tween segments and the terrain. It is precisely theactual
turning anglesthat provide an underlying time series for
our information-theoretic analysis: horizontal turning angles
{xi

t} and vertical turning angles{yi
t} at timet, wherei is the

actuator index,S is the number of joints,1≤ i ≤ S, andT
is the considered time interval,1≤ t ≤ T. Since we deal
with actual rather than ideal turning angles, the underlying
dynamics in the phase-space may include both periodic and
chaotic orbits.

We intend to estimate “irregularity” for each of the multi-
variate time series{xi

t} and{yi
t}. Each of these time series,

henceforth denoted for generality{vi
t}, contains both spatial

and temporal patterns, and minimizing the irregularity over
both space and time dimensions should ideally uncover the
extent of spatiotemporal coordination among actuator states.

For any given actuatori, a simple characterisation of the
“regularity” of the time series{vt} is provided by the auto-
correlation function. However, the auto-correlation is lim-
ited to measuring only linear dependencies. We consider
instead a more general approach. One classical measure is
the Kolmogorov-Sinai (KS) entropy, also known as metric
entropy (Kolmogorov, 1959): it is a measure for the rate at
which information about the state of the system is lost in
the course of time. In other words, it is an entropy per unit
time, an entropy rate or entropy density. Suppose that the
d−dimensional phase space is partitioned into boxes of size
rd. Let Pi0...id−1 be the joint probability that a trajectory is in
box i0 at time0, in box i1 at time∆t, ..., and in boxid−1 at
time (d−1)∆t, where∆t is the time interval between mea-
surements on the state of the system (in our case, we may



assume∆t = 1, and omit the limit∆t → 0 in the following
definitions). The KS entropy is defined by

K =− lim
r→0

lim
d→∞

1
d∆t

∑

i0...id−1

Pi0...id−1 lnPi0...id−1 , (1)

and more precisely, as a supremum ofK on all possible par-
titions. This definition has been generalized to the order-q
Rényi entropiesKq (Rényi, 1970):

Kq =− lim
∆t→0

lim
r→0

lim
d→∞

1
d∆t(q−1)

ln
∑

i0...id−1

Pq
i0...id−1

. (2)

It is well-known thatK = 0 in an ordered system,K is in-
finite in a random system, andK is a positive constant in
a deterministic chaotic system. Grassberger and Procac-
cia (Grassberger and Procaccia, 1983) considered the “cor-
relation entropy”K2 in particular, and capitalized on the
fact K ≥ K2 in establishing a sufficient condition for chaos
K2 > 0. For a univariate time series{vt} (the actuatori is
given), Grassberger and Procaccia algorithm estimates the
entropy rateK2 as follows:

K2 = lim
r→0

lim
d→∞

lim
T→∞

ln
Cd(T, r)

Cd+1(T, r)
, (3)

whereCd(r) is the correlation integral:

Cd(T, r) =
1

(T−1)T

T∑

l=1

T∑

j=1

Θ(r−‖~Vl − ~Vj‖) . (4)

Here Θ is the Heaviside function (equal to0 for nega-
tive argument and1 otherwise), and the vectors~Vl and ~Vj

contain elements of the observed time series{v(t)}, “con-
verting” or “reconstructing” the dynamical information in
one-dimensional data to information in thed-dimensional
embedding space:~Vk = (vk,vk+1,vk+2, . . . ,vk+d−1) (Takens,
1981). The norm‖~Vl − ~Vj‖ is the distance between the vec-
tors in thed-dimensional space, e.g., the maximum norm:

‖~Vl − ~Vj‖=
d−1
max
τ=0

(vl+τ−v j+τ) (5)

Put simply,Cd(r) computes the fraction of pairs of vectors
in thed-dimensional embedding space that are separated by
a distance less than or equal tor. In order to eliminate
auto-correlation effects, the vectors in Equation (4) should
be chosen to satisfy|l − j| > L, for some positiveL, and at
the very leastl 6= j.

For our analysis we need to introduce a spatial dimen-
sion (across multiple Snakebot’s actuators). Carretero-
Gonźalez et al. argued that a direct application of uni-
variate (temporal) delay reconstructions would fail for
spatiotemporal systems (Carretero-González et al., 2000),
and suggested that a spatiotemporal reconstruction can

be obtained by replacing the time-delay vectors~Vk =
(vk,vk+1,vk+2, . . . ,vk+d−1) by the spatiotemporal delay vec-

tors ~V i
k = (~vi

k,
~vi+1
k , ~vi+2

k , . . . ,
~vi+ds−1

k ) whose elements are

time-delay vectors~vi
k = (vi

k,v
i
k+1,v

i
k+2, . . . ,v

i
k+dt−1), and the

spatial indexi is fixed. The overall embedding dimension
for such a spatiotemporal reconstruction isd = dsdt , where
ds and dt denote the spatial and temporal embedding di-
mensions, respectively (the standard temporal delay recon-
struction is recovered by settingds = 1) (Carretero-Gonźalez
et al., 2000). The correlation integralCdsdt (T,S, r) can then
be generalized to:

1
(T−1)T(S−1)S

T∑

l=1

T∑

j=1

S∑

g=1

S∑

h=1

Θ(r−‖~Vg
l − ~Vh

j ‖) . (6)

The condition|l − j| > L for time-delays is similarly ex-
tended to Snakebot actuator-proximity|g− h| > M, for an
integerM, in order to exclude auto-correlation effects among
closely coupled segments. It is less trivial, however, to gen-
eralize the entropy rate estimate (3). The spatiotemporal
entropy density for cellular automata, for example, can be
defined ashdsdt = limds→∞ h(ds)/ds, whereh(ds) is the en-
tropy density of “patterns” (“blocks” or “words”)V(ds,dt)
of spatial sizeds and time lengthdt , given by

h(ds) = lim
dt→∞

−1
dt

∑

V(ds,dt )

p(V(ds,dt)) ln p(V(ds,dt)) . (7)

As noted by Boffettaet al. (Boffetta et al., 2002), the entropy
hdsdt cannot be practically computed, and the spatiotempo-
ral behavior can be obtained by studying either temporal se-
quences of increasingdt for a fixed spatial extentDs:

hdt (Ds) = lim
dt→∞

−1
dt

∑

V(Ds,dt )

p(V(Ds,dt)) ln p(V(Ds,dt)) (8)

or spatial sequences of increasingds for a given timeDt :

hds(Dt) = lim
ds→∞

−1
ds

∑

V(ds,Dt )

p(V(ds,Dt)) ln p(V(ds,Dt)) (9)

Following this suggestion, we propose to estimate correla-
tion entropyK2 obtained from the multivariate time series
with Sactuators (joints) andT time steps, as

Kdt
2 (Ds,T,S, r) = ln

Cdsdt (T,S, r)
Cds(dt+1)(T,S, r)

, (10)

for a fixed spatial extentDs, and as

Kds
2 (Dt ,T,S, r) = ln

Cdsdt (T,S, r)
C(ds+1)dt (T,S, r)

. (11)

for a given timeDt , where correlation integralsCdsdt (T,S, r)
are defined by expression (6).



The correlation entropyK2 (the generalized entropy rate)
measures the irregularity or unpredictability of the system.
A complementary quantity is theexcess entropyE (Feldman
and Crutchfield, 2003) — it may be viewed as a measure of
the apparent memory or structure in the system. The gener-
alized excess entropyE2 is defined by considering how the
finite-template (finite-delay or finite-extent) entropy rate es-
timatesKdt

2 (Ds,T,S, r) andKds
2 (Dt ,T,S, r) converge to their

asymptotic valueshdt (Ds) andhds(Dt). It is estimated as:

Edt
2 (Ds,T,S, r) =

Dt∑

dt=1

(Kdt
2 (Ds,T,S, r)−hdt (Ds)) , (12)

for a fixed spatial extentDs, and

Eds
2 (Dt ,T,S, r) =

Ds∑

ds=1

(Kds
2 (Dt ,T,S, r)−hds(Dt)) , (13)

for a given timeDt . For regular locomotion the asymptotic
values should be zero (while non-zero entropies would indi-
cate non-periodicity, i.e. deterministic chaos).

Following this, we determine standard deviationσdt

of Edt
2 (Ds,T,S, r) over spatial extentDs, and σds of

Eds
2 (Dt ,T,S, r) over timeDt . In well-coordinated Snakebots,

different spatial extentsDs should “agree” on the temporal
excess entropy. Similarly, different time delaysDt should
not “disagree” in terms of the spatial excess entropy.

In summary, our estimation procedure involves three
steps: 1) estimation of the correlation entropiesK2 (the gen-
eralized entropy rate) for a range of finite spatial extents and
temporal delays; 2) estimation of the spatial and temporal
excess entropiesE2 by integrating over the finite-template
entropy rates; 3) calculation of standard deviationsσdt and
σds of the temporal and spatial excess entropiesE2 over spa-
tial and temporal delays respectively. The resultant mea-
sures target the divergence of global structural patterns.

Results
In this section we present experimental results tracing esti-
mates of entropy ratesKdt

2 (Ds,T,S, r) andKds
2 (Dt ,T,S, r), as

well as their excess entropies, during evolution of a Snake-
bot. The Genetic Programming techniques employed in the
evolution are described elsewhere (Tanev et al., 2005; Tanev,
2005). Snakebots evolve within a population of200individ-
uals, and we trace the entropy rate of the best performer over
a number of generation.

Figures 2 and 3 contrast (for vertical actuators) tem-
poral entropy ratesKdt

2 (Ds,T,S, r) of the first offspring
and the final generation. Each figure shows temporal be-
haviour for multiple ranges (extents) of actuators, and their
non-zero values indicate the amount of non-periodicity,
achieved only asymptotically. For each fixedDs, the excess
entropy Edt

2 (Ds,T,S, r) integrates these “over-estimates”
Kdt

2 (Ds,T,S, r) over finite time delaysdt , and measures the
temporal structure in the system. The evolved solution has a

much better convergence as an ensemble of actuators across
multiple spatial extents, producing smallerσdt , highlighted
by Figure 4. In other words, there is a convergence of the
temporal excess entropies across the spatial dimension.

Figures 5 (the first offspring) and 6 (the final genera-
tion) compare spatial entropy ratesKds

2 (Dt ,T,S, r) for mul-
tiple time-delays. Again, for each fixedDt , the excess
entropy Eds

2 (Dt ,T,S, r) integrates the non-zero estimates
Kds

2 (Dt ,T,S, r) over finite spatial extentsds, and measures
the spatial structure in the system. The evolved solution con-
verges better across multiple time-delays, generating smaller
σds (Figure 7). This indicates that the spatial excess en-
tropies become similar across time-delays as the Snakebot
evolves. Since the direct-evolution targeted the overall ve-
locity, the temporal excess entropies converge better than the
spatial excess entropies — hence a slight increase in diver-
gence ofσds for later generations. The reason is that the
Snakebot has14 joints and is most coordinated at the mid-
rangeds = 7. Extending beyond the middle leads to slightly
more diverging entropy rates and excess entropies. Results
for the horizontal actuators (which contribute less to overall
locomotion than the vertical actuators) are very similar, and
are omitted due to a lack of space.

Conclusions
We modelled a specific step towards a theory of information-
driven evolutionary design: information-theoretic measures
of coordination in a modular robotic system (Snakebot). The
measures estimate the generalized “correlation entropies”
K2 computed over a time series of actuators’ states, their
excess entropiesE2, and standard deviations ofE2. Mini-
mization of these deviations is linked with coordination over
space and time. As expected, maximal coordination of ac-
tuators is achieved by individuals with fastest locomotion
(a direct measure). Moreover, a fitness function rewarding
coordination may sometimes be more suitable than a direct
velocity-based measure. For example, a Snakebot trapped
by obstacles may need to employ a locomotion gait with
highly coordinated actuators but near-zero absolute velocity.
An information-driven evolution minimizing both standard
deviationsσdt and σds is likely to produce fast Snakebots
with a higher degree of spatial regularity and modularity
than those observed so far. Balancing betweenσdt andσds

allows the designers to choose between temporal and spatial
regularity. A single spatiotemporal2D excess entropy, de-
scribed in (Feldman and Crutchfield, 2003), is interesting as
well — it is likely to produce a smoother objective (fitness)
function, at the expense of the balancing option. We agree
with Baldassarreet al. (Baldassarre et al., 2005) that this
type of analysis relating distributed coordination and self-
organizing principles is rarely done in research on collective
and modular robotics. The establishment of an adequate set
of the information-theoretic criteria will eventually support
a set of design guidelines for Artificial-Life systems.
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Figure 2: The best first offspring. Vertical actuators: tempo-
ral entropy rateKdt

2 (Ds,T,S, r).
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Figure 3: The best evolved solution. Vertical actuators: tem-
poral entropy rateKdt

2 (Ds,T,S, r).
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Figure 4: Standard deviationσdt of temporal excess entropy
for vertical actuators.
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Figure 5: The best first offspring. Vertical actuators: spatial
entropy rateKds

2 (Dt ,T,S, r).
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Figure 6: The best evolved solution. Vertical actuators: spa-
tial entropy rateKds

2 (Dt ,T,S, r).
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Figure 7: Standard deviationσds of spatial excess entropy
for vertical actuators.
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