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Self-organisation of coherent motion in systems of self-propelled particles (e.g., flocks, swarms, active matter) is
a pervasive phenomenon [1, 2, 3, 4, 5, 6, 7], which may be explained by some underlying universal principles. We
interpret self-organisation of collective motion as an example of collective and distributed computation, and study it
as a thermodynamic phenomenon [8]. In this abstract we report on our investigation of key thermodynamic quantities
such as free entropy and generalised work, using the dynamical model of collective motion proposed by Grégoire and
Chaté [9]. This model exhibits a kinetic phase transition over the parameters controlling the particles’ alignment,
separating (i) the “disordered motion” phase, in which particles do not settle on a dominant direction while sharing
a collective space, and (ii) the “coherent motion” phase, in which particles cohesively move in a common direction.

The Fisher information [10] measures the amount of information that an observable random variable X’ carries
about unknown parameters 6 = [61,0s,...,605]. The probability of the states of the system, described by the state
functions X,,(x) over the configuration space and thermodynamic variables 6,,, in a stationary state, is given by the
Gibbs measure:
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where 8 = 1/k,T is the inverse temperature T' (k; is the Boltzmann constant), the Hamiltonian H(z,0) defines the
total energy at state z, and Z(0) is the partition function [11, 12]. The Gibbs free energy of such system is:
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where U is the internal energy of the system, S is the configuration entropy and ¢,, is an order parameter. For a
physical system described by the Gibbs measure in Eq. (1), the Fisher information has several physical interpretations,
e.g., it is equivalent to the thermodynamic metric tensor g, (#), measures the size of the fluctuations about equilibrium

in the collective variables X,, and X,, is proportional to the curvature of the free entropy ¥ = InZ = —G, and to

the derivatives of the corresponding order parameters with respect to the collective variables [11, 13, 14, 12, 15, 16]:
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where the angle brackets represent average values over the ensemble.

It has also been argued that the difference between curvatures of the configuration entropy and the free entropy is
related to a computational balance between uncertainty and sensitivity [17]. We established a thermodynamic basis
for this relationship as follows [8]:
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where (Ugen) = U(S, ¢) — #0. This expression can be interpreted as the difference between the curvature of the free
entropy, captured by the Fisher information (the sensitivity of the system), and the curvature of the configuration
entropy (the uncertainty of the system). Under a quasi-static protocol, the first law of thermodynamics yields another
important result for the generalised work Wyep:
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Our results identify critical regimes and show that during the phase transition, where the configuration entropy of
the system decreases, the rates of change of the work and of the internal energy also decrease, while their curvatures
diverge.



We also consider a measure of the thermodynamic efficiency of swarming behaviour (treated as an example of
distributed computation), defined, for a given value of the control parameter 8, as the reduction in uncertainty (that
is, the increase in the internal order) that resulted from an expenditure of work:

_—dsjde _ —ds/dd
1= d(BWyen)/d6 1 Fe)der

(6)

where 6* is the zero-response point for which small changes incur no work [8]. This ratio can be considered entirely
in computational terms as the ratio of increasing order, obtained at 6, to the cumulative sensitivity incurred over a
process from the current state 6 to the state of perfect order, identified by the zero-response point 6*.

The sensitivity and the uncertainty are balanced in each phase (disordered motion or coherent motion). However,
at criticality, i.e., during a kinetic phase transition, this balance is broken, and the ratio 7, specified by Eq. (6),
diverges or peaks in finite-size systems. This indicates that the maximal thermodynamical efficiency of swarming
behaviour within the system of self-propelled particles is highest during the phase transition.

References

[1] S. Camazine. Self-organization in Biological Systems. Princeton University Press, 2001.
[2] I.D. Couzin. Collective minds. Nature, 445(7129):715-715, 02 2007.
[3] T. Vicsek and A. Zafeiris. Collective motion. Physics Reports, 517(3-4):71 — 140, 2012.

[4] W. Bialek, A. Cavagna, I. Giardina, T. Mora, E. Silvestri, M. Viale, and A.M. Walczak. Statistical mechanics for
natural flocks of birds. Proceedings of the National Academy of Sciences, 109(13):4786-4791, 2012.

[6] M. Castellana, W. Bialek, A. Cavagna, and I. Giardina. Entropic effects in a nonequilibrium system: Flocks of
birds. Phystical Review FE, 93:052416, 2016.

[6] E. Crosato, L. Jiang, V. Lecheval, J.T. Lizier, X.R. Wang, P. Tichit, G. Theraulaz, and M. Prokopenko. Infor-
mative and misinformative interactions in a school of fish. Swarm Intelligence, 12(4):283-305, 2018.

[7] A. Ward, T. Schaerf, A.L.J. Burns, J.T. Lizier, E. Crosato, M. Prokopenko, and M. Webster. Cohesion, order
and information flow in the collective motion of mixed-species shoals. Royal Society Open Science, 5:181132, 12
2018.

[8] E. Crosato, R.E. Spinney, R. Nigmatullin, J.T. Lizier, and M. Prokopenko. Thermodynamics and computation
during collective motion near criticality. Physical Review E, 97, 2018.

[9] G. Grégoire and H. Chaté. Onset of collective and cohesive motion. Physical Review Letters, 92:025702, 2004.

[10] R.A. Fisher. On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences, 222(594-604):309-368, 1922.

[11] D.C. Brody and N. Rivier. Geometrical aspects of statistical mechanics. Physical Review E, 51:1006-1011, 1995.
[12] G.E. Crooks. Measuring thermodynamic length. Physical Review Letters, 99:100602, 2007.

[13] D.C. Brody and A. Ritz. Information geometry of finite Ising models. Journal of Geometry and Physics, 47(2):207—
220, 2003.

[14] W. Janke, D.A. Johnston, and R. Kenna. Information geometry and phase transitions. Physica A: Statistical
Mechanics and its Applications, 336(1-2):181-186, 5 2004.

[15] X.R. Wang, J.T. Lizier, and M. Prokopenko. Fisher information at the edge of chaos in random Boolean networks.
Artificial Life, 17(4):315-329, 2011.

[16] M. Prokopenko, J.T. Lizier, O. Obst, and X.R. Wang. Relating Fisher information to order parameters. Physical
Review E, 84:041116, 2011.

[17] M. Prokopenko and I. Einav. Information thermodynamics of near-equilibrium computation. Physical Review E,
91:062143, 2015.



