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Abstract
We explore several opportunities created by a new approach to science, engineering and management: 
complex systems. By distinguishing between complex and complicated systems, we reflect on different 
design approaches, and discuss the advantages offered by guided self-organisation. Pointing out that 
several modern challenges are characterised by critical dynamics, cascading failures and non-trivial 
information flows, we attempt to highlight the importance of cross-disciplinary quantitative methods, 
as well as novel educational initiatives in Complex Systems.

Introduction

Complex systems is a new approach to 
science, engineering and management 

that studies how relationships between 
parts give rise to the collective behaviours 
of the entire system, and how the system 
interacts with its environment. Dynamics 
of a complex system cannot be predicted, 
or explained, as a linear aggregation of the 
individual dynamics of its components, and 
the interactions among the many constituent 
microscopic parts bring about macroscopic 
phenomena that cannot be understood by 
considering any single part alone (“the whole 
is more than the sum of the parts”).

Complex systems are often confused with 
complicated systems which may also com-
prise a large number of components and 
interactions. This is not surprising: after all, 
both concepts express a notion opposite to 
being simple or straightforward. The two 
terms also share a common Latin origin: 
complexus originates from complectī (“to 
entwine or encircle”), derived in turn from 
com- (“together”) and plectere (“to weave”), 

while complicātus is a form of complicāre 
(“to fold together”) which augments com- 
(“together”) with plecāre (“to fold”). So how 
significant is the difference between weaving 
and folding some parts together?

Naïvely, this subtle distinction reflects 
on different design approaches: one flex-
ibly weaves and interconnects the elements, 
revealing elastic and resilient emergent 
forms; while the other rigidly folds the 
components and reduces their interaction 
potential, following a prescribed procedure 
towards a planned, if often brittle, structure 
with predictable behaviour.

This divergence becomes even more appar-
ent when one compares natural organisms 
which have evolved their adaptive and self-
organising responses, on the one hand, with 
artificial machines which conform to precise 
blueprints and operate under predefined 
protocols, on the other. As noted by a well-
known biologist, Carl Woese: “Machines are 
stable and accurate because they are designed 
and built to be so. The stability of an organ-
ism lies in resilience, the homeostatic capac-
ity to re-establish itself.”
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One striking example of biological com-
plexity is a swarming behaviour exhibited 
by schools of fish, herds of wildebeest, and 
flocks of birds. In response to a predator, 
many schools of fish display complex col-
lective patterns of spatial aggregation, so 
that small perturbations can quickly cas-
cade through an entire swarm in a wave-
like manner transferring the survival-critical 
information.

While complex self-organising systems 
adaptively process information in creating 
and exploiting emergent non-deterministic 
patterns, our engineering and management 
practice is driven by data, producing com-
plicated designs and predictable determinis-
tic regimes that prove brittle to unexpected 
malfunctions over and over again (cf. Table 
1, Figures 1 and 2).

Table 1: Complex vs Complicated Systems.
Complex Complicated

Evolved adaptive response Designed for performance

Emergent  
non-deterministic patterns

Predictable deterministic 
regimes

Self-organisation: hard to 
predict

Blueprint: verification  
and testing

Resilient to perturbations Brittle to malfunctions

Interdependent networks Centralised management

Deals with information Deals with data

As modern day infrastructure is growing 
more interconnected, the breakdown of 
a single transformer in a small substation 
can lead to massive cascading failures in a 
continent-wide electrical power grid, trig-
gering further interruptions to traffic and 
communication systems; the emergence of 
a new pathogen in a remote village can give 
rise to a devastating global epidemic; the 
introduction of an exotic new species can 
eventually contribute to a chain of food-web 

disruptions and wide ecosystem collapses 
(cf. Table 2).

Figure 1: A complex system: a flock of auk-
lets exhibiting swarm behaviour (source: 
Wikipedia).

Figure 2: A complicated system: a V6 inter-
nal combustion engine from a Mercedes car 
(source: Wikipedia).

Table 2: Examples of interdependent  
challenges.
Demographic  
& social Technological Environmental

overpopulation 
and ageing 
population

infrastructure 
degradation climate change

epidemics and 
pandemics

cascading power 
failures natural disasters

surge in irregular 
migration

transport and 
supply chain 
disruptions

animal and plant 
diseases
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Living at the edge of chaos
Humans are typically inclined to use reduc-
tionist logic and analyse a system through a 
series of short, discrete scenarios, expecting a 

“correct response” to each scenario. However, 
not all scenarios have clear endings or known, 
correct answers. Modern power grids, com-
munication and transport networks, mega-
projects, and diverse social systems exhibit 
critical phenomena, characterised by phase 
transitions and tipping points, when a small 
change triggers a strong or even catastrophic 
response in the overall dynamics (Scheffer et 
al., 2009; Lenton, 2011) (cf. Table 3).

Table 3: Self-organising critical dynamics.
Physics Avalanches

Technology Power grids

Socio-technical systems Traffic jams

Socio-ecological systems Epidemics

Biological organisms Collective behaviour 
(flocks, swarms, etc.)

There are several common features of com-
plex dynamics as the involved agents (parti-
cles, fish, cars) are independent but interact-
ing (cf. Table 4). However, as we move from 
physics to biology to social dynamics,

precise nature of the interactions is less •	
defined;
there are more hidden variables;•	
it is harder to influence the desired out-•	
come, to “guide” the system;
there are fewer theories of the systemic •	
behaviour/risk. 

Many hidden variables may change quickly, 
but collective behaviours (encapsulated in 
the corresponding order parameters) can 
adapt to critical situations. By varying con-
trol parameters (e.g., the system composition 
and the strength of interactions within it) 
one may trigger the system-level phase tran-
sitions. Haken introduced order parameters 

in explaining structures that spontaneously 
self-organize in nature (Haken, 1983; 2006). 
When energy or matter flows into a system 
typically describable by many variables, it 
may move away from equilibrium, approach 
a threshold, and undergo a phase transition. 
At this stage, the behaviour of the overall 
system can be described by only a few order 
parameters that characterize newly formed 
patterns. In other words, the system becomes 
low-dimensional as some dominant variables 

“enslave” others, making the whole system to 
act in synchrony.

Table 4: Common features of complexity.
Microscopic interactions lead to macroscopic effects
Sensitivity to initial conditions
Critical thresholds (tolerance margins)
Cascades of failures (-ve) or information flows (+ve)
Dynamics self-organise to a critical regime
Guided self-organisation:

triggered avalanche (controlled release)•	
islanding of power micro-grids•	
re-routing of traffic•	
vaccination, quarantine during epidemics•	

Guided Self-Organisation
Some of the hope for harnessing and guid-
ing resultant self-organisation (Kauffman, 
1993) is offered by the emerging discipline 
of Guided Self-Organisation (Prokopenko, 
2009). This field is aimed at formalising the 
art of “herding cats”, i.e., guiding collective 
behaviours towards desired outcomes, by 
optimising the ways to define agent interac-
tion rules, set relevant constraints and select 
network topology.

One exciting application prospect is 
“social thermodynamics”, inspired by classi-
cal thermodynamics and its extensions such 
as “physics of information” or “information 
thermodynamics” (Bennett, 2003; Lloyd, 
2006; Prokopenko et al., 2011; Parrondo 
et al., 2015; Prokopenko and Einav, 2015; 
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Spinney et al., 2016). The main insight is 
that emergence of patterns within social 
dynamics may be understood and traced 
analogously to macroscopic thermodynamic 
regularities emerging out of microscopic 
statistical mechanics. The most significant 
theoretical task is to carefully interpret ther-
modynamic notions, such as entropy and 
energy, dissipative structures and irreversible 
processes, bifurcations and self-organisation, 
in the context of social interactions. While 
this general goal may not be achievable in 
the near-term, some specific areas where 
social dynamics are restricted by physical 
constraints may be formalised successfully, 
e.g., urban flows within an industrial ecology 
(Hernando and Plastino, 2012; Bristow and 
Kennedy, 2015).

A universal “language” is typically needed 
in order to comprehensively analyse dynam-
ics generated by diverse complex systems and 
recognise distinct patterns of information 
and computation flow. Such lingua franca is 
provided by Information Theory operating 
on probability distributions that require only 
minimal structure (a probability measure) on 
the space of interest, and make no assump-
tions about a spatiotemporal structure of 
the system’s space, its symmetries, differen-
tiability, etc. (Polani, 2009; Prokopenko et 
al., 2009).

A recently developed framework of infor-
mation dynamics systematically studies 
information processing in complex systems 
(Lizier et al., 2008; 2010; 2012) relating it 
to critical phenomena, e.g., phase transitions. 
This methodology suggests that discover-
ing and quantifying information flows in 
complex systems could be a key to guiding 
the system dynamics towards desirable out-
comes.

Changing the mindset
How can we predict the behaviour of sys-
tems that are too complex for our typical 
reductionist reasoning? The answers to this 
question are not intuitive or trivial, and in 
our opinion, would require a specific skill set 
which must be developed within educational 
programs explicitly dedicated to Complex 
Systems.

One of the biggest mysteries in the his-
tory of western cartography is a rather sin-
ister image offered by Fool’s Cap Map of 
the World, ca. 1580-1590 (cf. Figure 3). A 
possible interpretation of the map’s message 
is that “the world is a sombre, irrational and 
dangerous place, and that life on it is nasty, 
brutish and short. The world is, quite liter-
ally, a foolish place.” (Jacobs, 2014). And so, 
one may wonder if a “solution” to resolving 
numerous intricacies of our modern “post-
truth” world, full of irrational and complex 
dependencies, should lie not within a novel 
mathematical framework, but rather in a 
new mindset.

Figure 3: Fool’s Cap Map of the World 
(source: Wikimedia Commons).
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Complexity, as a field of study, has shaped 
beyond the confines of physics, biology, 
mathematics, computer science and other 
disciplines which strongly contributed to 
its inception, and is on a verge of a rapid 
expansion within educational programs 
worldwide.

Professionals educated in science, engi-
neering and management of Complex Sys-
tems will quantify the impact of unexpected 
events, design and analyse resilient socio-
technological systems, and develop robust 
strategies for crisis forecasting and manage-
ment. They will operate across discipline 
boundaries, in environments outside the 
experience of most professionals, providing 
key modelling and policy-informing inputs 
and insights to resolution of recurrent chal-
lenges across the globe.

The University of Sydney’s postgraduate 
program in Complex Systems, including a 
Master of Complex Systems (MCXS) offered 
from 2017, is unique in the Southern Hemi-
sphere. It leverages the research strengths of 
its newly created Centre for Complex Sys-
tems and is aimed at an exclusive cohort of 
high-achieving individuals.

MCXS provides strong comprehensive 
skills in computational analysis, modelling 
and simulation of collective and dynamic 
emergent phenomena, while engaging quan-
titative social and health sciences. The core 
units of study include large-scale networks, 
agent-based modelling, complex civil sys-
tems, self-organisation and criticality, sta-
tistics, stability analysis, and visualisation. 

The program also offers several internship 
opportunities, leading to specialisations in 
engineering, biosecurity, ecology, transport, 
and research methods, covering disaster 
management, computational epidemiology, 
nonlinear dynamics, smart grids, control 
theory, resilient supply chains and quanti-
tative logistics.

It is expected that a number of MCXS 
graduates will continue on a pathway to a 
research career, advancing the field of Com-
plex Systems in the 21st century, and harness-
ing the power of complexity in real-world 
applications.

More likely than not, the scope of Com-
plex Systems research will keep expanding as 
we continue to explore our interconnected 
world: as pointed out by a physicist Heinz 
R. Pagels several decades ago, “Science has 
explored the microcosmos and the macro-
cosmos; we have a good sense of the lay of 
the land. The great unexplored frontier is 
complexity.”

Acknowledgements
The author was supported through the 
Australian Research Council (ARC) grants 
DP160102742 “Large-scale computa-
tional modelling of epidemics in Australia: 
analysis, prediction and mitigation” and 
DP170102927 “Australian housing market 
risks: simulation, modelling and analysis”, 
and The University of Sydney’s postgraduate 
program in Complex Systems:
http://sydney.edu.au/courses/master-of-
complex-systems



109

Journal & Proceedings of the Royal Society of New South Wales
Prokopenko — Modelling Complex Systems and Guided Self-Organisation

References
Bennett, C. H. (2003) Notes on Landauer’s 

principle, reversible computation, and 
Maxwell’s Demon. Studies in History and 
Philosophy of Science Part B, 34(3):501–510.

Bristow, D. and Kennedy, C. (2015) Why Do 
Cities Grow? Insights from Nonequilibrium 
Thermodynamics at the Urban and Global 
Scales, Journal of Industrial Ecology, 19(2): 
211-221.

Haken, H. (1983) Synergetics, an Introduction: 
Nonequilibrium Phase Transitions and Self-
Organization in Physics, Chemistry, and 
Biology. Springer-Verlag, 3rd rev. enl. ed., New 
York.

Haken, H. (2006) Information and Self-
Organization: A Macroscopic Approach to 
Complex Systems. Springer-Verlag, Berlin 
Heidelberg.

Hernando, A. and Plastino, A. (2012) 
Thermodynamics of Urban Population Flows, 
Physical Review E, 86, 066105.

Jacobs, F. (2014) The Fool’s Cap Map of the 
World, online: http://bigthink.com/strange-
maps/480-the-fools-cap-map-of-the-world 

Kauffman, S. A. (1993) The Origins of Order: 
Self-Organization and Selection in Evolution. 
Oxford University Press, New York.

Lenton T.M. (2011) Early warning of climate 
tipping points. Nature Climate Change, 1, 
201–209.

Lloyd, S. (2006) Programming the Universe. 
Vintage Books, New York.

Lizier, J. T., Prokopenko, M., and Zomaya, 
A. Y. (2008) Local information transfer as 
a spatiotemporal filter for complex systems. 
Physical Review E, 77(2):026110.

Lizier, J. T., Prokopenko, M., and Zomaya, 
A. Y. (2010) Information modification and 
particle collisions in distributed computation. 
Chaos, 20(3):037109.

Lizier, J. T., Prokopenko, M., and Zomaya, 
A. Y. (2012) Local measures of information 
storage in complex distributed computation. 
Information Sciences, 208:39–54.

Parrondo, J. M. R, Horowitz, J. M., and 
Sagawa, T. (2015) Thermodynamics of 
information, Nature Physics, 11(2):131–139

Polani, D. (2009) Information: currency of 
life?, HFSP Journal, 3(5):307–316.

Prokopenko, M. (2009) Guided self-
organization, HFSP Journal, 3(5):287–289.

Prokopenko, M. Boschetti, F., and Ryan, A. 
(2009) An information-theoretic primer on 
complexity, self-organisation and emergence, 
Complexity, 15(1):11–28.

Prokopenko, M. and Einav, I. (2015). 
Information thermodynamics of near-
equilibrium computation, Physical Review E, 
91, 062143.

Prokopenko, M., Lizier, J. T., Obst, O. 
and Wang, X. R. (2011) Relating Fisher 
information to order parameters, Physical 
Review E, 84, 041116.

Scheffer M., Bascompte, J., Brock, W. A., 
Brovkin, V., Carpenter, S. R., Dakos, V., 
Held, H., van Nes, E. H., Rietkerk, M., and 
Sugihara, G. (2009). Early-warning signals 
for critical transitions. Nature, 461, 53–59.

Spinney, R. E., Lizier, J. T., and Prokopenko, 
M. (2016) Transfer entropy in physical 
systems and the arrow of time, Physical 
Review E, 94, 022135.




