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Sources of complexity

» complexity of human behaviour

» SO0cio-economic complexity

» bio-complexity



The COVID-19: four pandemic stages in Australia

e SYDNEY

*

(incidence, as of January 27, 2023)

Daily new confirmed COVID-19 cases

7-day rolling average. Due to limited testing, the number of confirmed cases is lower than the true number of
infections.
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Zepam s The COVID-19: four pandemic stages in Australia

. (deaths, as of January 27, 2023)

Daily new confirmed COVID-19 deaths

7-day rolling average. Due to varying protocols and challenges in the attribution of the cause of death, the number of
confirmed deaths may not accurately represent the true number of deaths caused by COVID-19.
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COVID-19 pandemic modelling using ABM

> Large-scale high-resolution agent-based models
= demographics: from census based data to agents
= mobility: travel patterns including long-distance

= infection: epidemiology

» AMTraC-19: Agent-based Model of Transmission and Control of
the COVID-19 pandemic in Australia (~ 24M agents)

> Model calibration and validation during COVID-19 pandemic

1st stage, ancestral (March — June 2020)

2"d stage, ancestral (July — September 2020)
3'd stage, Delta (June — November 2021)
4™ stage, Omicron (December 2021 — November 2022)
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“Same storm, different boats”

| ____— household

neighbourhood

household cluster

- community

- working group

Agent attributes:
* demographic
e commute pattern
- S E,ILR
» pathogenesis
« compliance
(Cl, HQ, SC, SD)
* vaccination, etc.

C. Zachreson, K. M. Fair, N. Harding, M. Prokopenko, Interfering with influenza: nonlinear coupling of reactive
and static mitigation strategies, Journal of Royal Society Interface, 17(165): 20190728, 2020.
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Features of AMTraC-19

« ~24M stochastically generated agents (Census, ABS & ACARA data)
* household size and composition vary across different local areas

« commuting patterns between residence and work / study

 flexible infection seeding scenarios

« transmission within mixing contexts

 different symptomatic ratios for children and adults

e vaccination rollout with two vaccines o)

O O
o | =W W W=
« vaccine efficacy split across components (infection, symptoms, transmission)

 varying social distancing (“stay-at-home” restrictions)

S. L. Chang, N. Harding, C. Zachreson, O. M. CIliff, M. Prokopenko, Modelling transmission and control of the
COVID-19 pandemic in Australia, Nature Communications, 11, 5710, 2020.

C. Zachreson, S. L. Chang, O. M. CIiff, M. Prokopenko, How will mass-vaccination change COVID-19 lockdown
requirements in Australia? The Lancet Regional Health — Western Pacific, 14: 100224, 2021.
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residential areas and destination zones

*

Fig. 1 Maps of the Greater Sydney region illustrating the distribution of population partitions. (a) A map of the
Greater Sydney region showing SA2 (black) and SA1 (red) population partitions. (b) A map of the same area
showing SA2 (black) and DZN (red) partitions. The inset in (b) zooms in on the Sydney central business district
to illustrate the much denser packing of DZN partitions in that area.

K. M. Fair, C. Zachreson, M. Prokopenko, Creating a surrogate commuter network from Australian Bureau of
Statistics census data, Scientific Data, 6, 150, 2019.
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Australian Census: travel-to-work data (mobility)
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Fig. B1. Commute distance distributions.
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International air traffic

Airport code State City Passengers
SYD NSW Sydney 40884 _ M
) 354 N CONs

MEL VIC Melbourne 25859 o & W
BNE QLD Brisbane 14250 ! ‘s TSV
PER WA Perth 11449 { N\, BNE
OOL QLD Gold Coast 3022 N ]

_ PER ) U / O0OL
ADL SA Adelaide 2214 ! Y Y
CNS QLD Cairns 1874 ADL™ A\ a = sYD
DRW NT Darwin 597 MPE: G
TSV QLD Townsville 105

Fig. 3. Daily incoming passengers per Australian international airport obtained from BITRE [30] along with a map detailing the airport locations.

O. M. CIiff, N. Harding, M. Piraveenan, E. Y. Erten, M. Gambhir, M. Prokopenko, Investigating
Spatiotemporal Dynamics and Synchrony of Influenza Epidemics in Australia: An Agent-Based
Modelling Approach, Simulation Modelling Practice and Theory, 87, 412-431, 2018.
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Social Distancing (SD): “stay-at-home” restrictions

Table 2 The micro- and macro-distancing parameters: macro-compliance levels and context-dependent micro-distancing levels.

Strategy Macro-distancing Micro-distancing contacts
Compliance levels Household Community Workplace/school
No intervention 100% 100% 100% 100%
Case isolation 70% 100% 25% 25%
Home quarantine 50% 200% 25% 25%
School closure (children) 100% 150% 150% 0%
School closure (parents) 25 or 50% 150% 150% 0%
Social distancing 0-100% ( 100% 50% 0% | —
, 1 9
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S. L. Chang, N. Harding, C. Zachreson, O. M. Cliff, M. Prokopenko, Modelling transmission and control of the
COVID-19 pandemic in Australia, Nature Communications, 11, 5710, 2020.
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Modelling vaccination rollout

« Efficacy for susceptibility (VES): impacts immunity in those susceptible to O
the virus (reduces the probability of becoming infected if exposed) = [
« Efficacy for disease (VEd): impacts the expression of illness in those who o

are vaccinated and subsequently become infected (reduces the probability "
of expressing symptoms if infected)

« Efficacy for infectiousness (VEI): impacts the potential for vaccinated 0
Individuals to transmit the virus if infected (reduces the force of infection =
produced by infected individuals who are vaccinated)

VE = VEd + VEs - VEs x VEd VEi=~0.5

for example: 091=0.7+0.7-0.7x0.7
0.92=0.8+0.6-0.8x0.6

0.75= 0.5+05-0.5x0.5
0.65= 05+03-0.5%x0.3

C. Zachreson, S. L. Chang, O. M. Cliff, M. Prokopenko, How will mass-vaccination change COVID-19 lockdown
requirements in Australia? The Lancet Regional Health — Western Pacific, 14: 100224, 2021.
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Vaccination components

piln)=1— ]] { I] @ P?_n-(n))}

geGi(n) |j€AG\i

.3 5
pin)=1- 1] [1 — (1= VE})Fy(i) (1 - I a-a-VvE)FG) p?_m-(n))ﬂ
geGi(n) JEAg\t
)



THE UNIVERSITY OF

== SYDNEY Balance health and socioeconomic consequences:

challenges

= how to objectively model and quantify the health and economic costs
In comparative terms?

= how to remove the bias created by subjective perspectives of policy-
and decision-makers?

= how to account for the diversity of demographics and human
behaviour?

Q. D. Nguyen, M Prokopenko, Optimising cost-effectiveness of pandemic response under partial intervention
measures, Scientific Reports, 12: 19482, 2022.
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» the Net Health Benefit (NHB)

» a reinforcement learning (RL) algorithm dynamically optimising
feasible interventions

» an agent-based model (ABM) based on comprehensive
demographic (census) data
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Optimisation: RL with ABM in the loop

Agent-Based Model
COVID-19 Transmission and Interventions
Health Effect @ s ~ Economic Cost
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Adaptive SD strategies
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Cumulative NHB

Cumulative NHB
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Cumulative NHB generated by adaptive SD strategies
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Phase diagram of the NHB dynamics:

health effects vs economic costs
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- Inequality of wealth distribution

100%

Cumulative share of income earned

>
100%

Cumulative share of people from lowest to highest incomes
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- Pandemic inequality: pandemic Lorenz curves

>

—
S
S
R

o Fraction of Cumulative Incidence

Fraction of Ranked Population 100%>

Q. D. Nguyen, S. L. Chang, C. M. Jamerlan, M. Prokopenko, Measuring unequal distribution of pandemic severity
across census years, variants of concern and interventions, Population Health Metrics, accepted, 2023;
arXiv: 2306.14667.
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: Pandemic inequality: pandemic Lorenz curves
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Q. D. Nguyen, S. L. Chang, C. M. Jamerlan, M. Prokopenko, Measuring unequal distribution of pandemic severity
across census years, variants of concern and interventions, Population Health Metrics, accepted, 2023;
arXiv: 2306.14667.
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Pandemic inequality

(a) Ancestral (b) Delta (¢) Omicron
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Q. D. Nguyen, S. L. Chang, C. M. Jamerlan, M. Prokopenko, Measuring unequal distribution of pandemic severity
across census years, variants of concern and interventions, Population Health Metrics, accepted, 2023;
arXiv: 2306.14667.
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Effect of school closures

(a) Ancestral (b) Delta (¢) Omicron
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Q. D. Nguyen, S. L. Chang, C. M. Jamerlan, M. Prokopenko, Measuring unequal distribution of pandemic severity
across census years, variants of concern and interventions, Population Health Metrics, accepted, 2023;
arXiv: 2306.14667.
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Pandemic inequality: urban vs regional
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Q. D. Nguyen, S. L. Chang, C. M. Jamerlan, M. Prokopenko, Measuring unequal distribution of pandemic severity
across census years, variants of concern and interventions, Population Health Metrics, accepted, 2023;
arXiv: 2306.14667.
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Challenges and feedback loops

» complexity of human behaviour:
» tipping points in social distancing (SD) compliance / adoption
» highly-transmissible variants strongly amplify small changes in SD adoption

» vaccine uptake and SD levels are uneven across demographics

» socio-economic complexity:
» subjective perspectives of policy- and decision-makers
» capacity limits of testing, tracing, isolation, quarantine measures
» balance of health and economic costs
» bio-complexity:
» emergence and evolution of sub-lineages

» vaccination efficacy diminishes over time

> recurrent waves
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QO B8 https://zenodo.org/record/5778218

Upload Communities

8 %

There is a newer version of this record available.

December 14, 2021 [ Software |

AMTraC-19 Source Code: Agent-based Model
of Transmission and Control of the COVID-19
pandemic in Australia

Chang, Sheryl L.; ® Harding, Nathan; & Zachreson, Cameron; (® Cliff, Oliver M.; ® Prokopenko, Mikhail

The software implements an agent-based model for a fine-grained computational simulation of the COVID-19 pandemic in
Australia. This model is calibrated to reproduce several features of COVID-19 transmission, including its age-dependent
epidemiological characteristics. The individual-based epidemiological model accounts for mobility (worker and student
commuting) patterns and human interactions derived from the Australian census and other national data sources. The
high-precision simulation comprises approximately 24 million stochastically generated software agents and traces various
scenarios of the COVID-19 pandemic in Australia. The software has been used to evaluate various intervention strategies,
including (1) non-pharmaceutical interventions, such as restrictions on international air travel, case isolation, home
quarantine, school closures, and stay-at-home restrictions with varying levels of compliance (i.e., "social distancing"), and
(2) pharmaceutical interventions, such as pre-pandemic vaccination phase and progressive vaccination rollout.

The paper describing the model and the scenarios investigated with AMTRaC-19 (v7_7d):

S. L. Chang, C. Zachreson, O. M. Cliff, M. Prokopenko, Simulating transmission scenarios of the Delta variant of SARS-CoV-2
in Australia, Frontiers in Public Health, 10, 10.3389/fpubh.2022.823043, 2022.

Please cite it, as well as other publications referenced below, when using the software.

The dataset generated during this study is also available on Zenodo:

425 27

@ views & downloads

See more details...

Indexed in

OpenAlRE

Publication date:
December 14, 2021

DOI:
DOI 10.5281/zenodo.5778218

Keyword(s):
computational epidemiology m SARS-CoV-2
agent-based model | pandemic model
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