Modelling the COVID-19 pandemic in Australia:
a tipping point in social distancing

Funding: Australian Research Council Discovery project
Large-scale computational modelling of epidemics in
Australia (ARC DP160102742)

Prof. Mikhail Prokopenko
Centre for Complex Systems, Faculty of Engineering

Marie Bashir Institute for Infectious Diseases and
Biosecurity

GMT Workshop on Nonlinear Dynamics and Statistics

9 December 2020




THE UNIVERSITY OF

SYDNEY Agent-based Modelling (ABM) of epidemics

» Modelling pandemics with large-scale high-resolution agent-based models
= demographics: from census based data to agents
= mobility:. travel patterns including long-distance
= jnfection: disease transmission and natural history models

= AMTraC-19 — Agent-based Model of Transmission and Control of the COVID-19
pandemic in Australia

» COVID-19 pandemic

age-dependent epidemiological characteristics

pandemic trends (peaks, resurgence), and model validation

strategies for mitigation, suppression (or elimination)

tipping points (e.g., in social distancing)
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== SYDNEY Agent-based Modelling (ABM) of epidemics

= anonymous individuals (census based) — agents with attributes (e.g., age, gender,
occupation, susceptibility and immunity to diseases)

= agent interactions: contacts and disease transmission over about 24M agents,
grouped in social “contexts” (households, neighbourhoods, communities,
workplaces, schools, classrooms, etc.)

= specific virus (transmission rates, natural history of the disease)
= outbreak modelling of pandemic scenarios (international air traffic)
= varying sources and intensity of infection, as well as population sets

= calibration to known data on reproductive ratio R, attack rates (across “contexts”),
growth rates, generation period, other parameters
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Population partitions:
residential areas and destination zones
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Fig. 1 Maps of the Greater Sydney region illustrating the distribution of population partitions. (a) A map of the
Greater Sydney region showing SA2 (black) and SA1 (red) population partitions. (b) A map of the same area
showing SA2 (black) and DZN (red) partitions. The inset in (b) zooms in on the Sydney central business district
to illustrate the much denser packing of DZN partitions in that area.

K. M. Fair, C. Zachreson, M. Prokopenko, Creating a surrogate commuter network from Australian
Bureau of Statistics census data, Scientific Data, 6, 150, 2019.



THE UNIVERSITY OF

=2) SYDNEY

*

Airport code State City Passengers
SYD NSW Sydney 40884
MEL VIC Melbourne 25859
BNE QLD Brisbane 14250
PER WA Perth 11449
OOL QLD Gold Coast 3022
ADL SA Adelaide 2214
CNS QLD Cairns 1874
DRW NT Darwin 997
TSV QLD Townsville 105

International air traffic
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Fig. 3. Daily incoming passengers per Australian international airport obtained from BITRE [30] along with a map detailing the airport locations.

O. M. CIiff, N. Harding, M. Piraveenan, E. Y. Erten, M. Gambhir, M. Prokopenko, Investigating
Spatiotemporal Dynamics and Synchrony of Influenza Epidemics in Australia: An Agent-Based
Modelling Approach, Simulation Modelling Practice and Theory, 87, 412—431, 2018.
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(a) Natural history of the discase. (b) Simulated generation time.

Fig. 2. Natural history of the disease and corresponding simulated generation time. The disease dynamics are modelled as having a linear increase
followed by a linear decrease, as illustrated in Fig. 2 (a). In the figure, the area under the curve is shaded according to the proportion of people at
least that infectious after disease onset (darker representing a higher proportion). If an agent becomes symptomatic, their infectiousness doubles
(dashed blue line) from that day onward. Moreover, 67% of agents become symptomatic; of these agents, 30% start showing symptoms on day 1,
50% on day 2, and the remaining 20% on day 3. We obtain empirical generation times from simulations resulting from this model, shown in 2(b) for
a number of Ry values. The confidence intervals range from 3.35 to 3.39 days (also shown on Fig. 2(a)), depending on R, and, in general, the

generation time has a slight downward trend as a function of disease severity.

O. M. CIiff, N. Harding, M. Piraveenan, E. Y. Erten, M. Gambhir, M. Prokopenko, Investigating
Spatiotemporal Dynamics and Synchrony of Influenza Epidemics in Australia: An Agent-Based
Modelling Approach, Simulation Modelling Practice and Theory, 87, 412—431, 2018.
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= SYDNEY  Epidemic modelling: natural history of the disease
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S. L. Chang, N. Harding, C. Zachreson, O. M. CIiff, M. Prokopenko, Modelling transmission and
control of the COVID-19 pandemic in Australia, Nature Communications, 11, 5710, 2020.
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N. Harding, R. E. Spinney, M. Prokopenko, Phase transitions in spatial connectivity during
influenza pandemics, Entropy, 22(2), 133, 2020.
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Epidemic modelling: transmission probabilities

Table C2
Daily transmission probabilities q}.g_yi for different contact groups g, obtained by Eq. (4) where ,5’35_)1. are reported by [10].

Contact Group g Infected Individual j Susceptible Individual i Transmission Probability qqui
Household size 2 Any Child (<19) 0.0933
Any Adult (=18) 0.0393
Household size 3 Any Child (<19) 0.0586
Any Adult (=18) 0.0244
Household size 4 Any Child (<19) 0.0417
Any Adult (=18) 0.0173
Household size 5 Any Child (<19) 0.0321
Any Adult (=18) 0.0133
Household size 6 Any Child (<19) 0.0259
Any Adult (=18) 0.0107
School Child (<19) Child (<19) 0.000292
Grade Child (<19) Child (<19) 0.00158
Class Child (<19) Child (<19) 0.035

p?—z-i{ﬂj =K f(n— L | J) qh?—}i

global scalar

pm)=1- [ | I] -p.m)

geGi(n) | jeAg\1
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O. M. CIiff, N. Harding, M. Piraveenan, E. Y. Erten, M. Gambhir, M. Prokopenko, Investigating
Spatiotemporal Dynamics and Synchrony of Influenza Epidemics in Australia: An Agent-Based
Modelling Approach, Simulation Modelling Practice and Theory, 87, 412—431, 2018.
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C. Zachreson, K. M. Fair, N. Harding, M. Prokopenko, Interfering with influenza: nonlinear
coupling of reactive and static mitigation strategies, J. Royal Society Interface, 17(165),
20190728, 2020.
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R. Antia, R. R. Regoes, J. C. Koella, C. T. Bergstrom. The role of evolution in the emergence of
infectious diseases. Nature, 426, 658, 2003.
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Calibration (R,;): COVID-19

Q =
82 Q
= @
S ® 25
= >
o ]
E1qt a
1 L
0 ‘ ‘ 0 : ' ‘
0 50 100 150 200 0 50 100 150 200
03-Feb 24-Mar 13-May 02-Jul 21-Aug 03-Feb 24-Mar 13-May 02-Jul 21-Aug
c x10° d
' 0.4 ' J k=2,R; =194
S S k=225 R_ =239
€10 c 0
3 2037 k=25 R, =259
0 O 5 |
£ & 5 k=275 R =2.77
©
g - g 0.2
= 5¢ <SS
o = O
=} o=
= 0.1
2 o £
(&) o |
0 : ‘ ‘ 0" ' '
0 50 100 150 200 0 50 100 150 200

03-Feb 24-Mar 13-May 02-Jul 21-Aug 03-Feb 24-Mar 13-May 02-Jul 21-Aug



THE UNIVERSITY OF

N

Model validation
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Suppression (Social Distancing, SD): COVID-19
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Critical regime (phase transition): COVID-19
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SDNEY Spatial morphology: population mobility

and degree of rationality
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N. Harding, R. E. Spinney, M. Prokopenko, Population mobility induced phase separation in SIS
epidemic and social dynamics, Scientific Reports, 10: 7646, 2020.



Summary

» Nonlinearity:

 natural history of the disease

« transmission across mixing social contexts
» feedbacks (positive and negative)

« effects of social distancing

» Tipping points:

» emergence of strains (R, 2 1.0)
* minimal required social distancing
 spatial morphology vs rationality
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