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Spanish Flu 1918: 500 million infected, with deaths of three to five
percent of the world's population

e SYDNEY

*

Soldiers from Fort Riley, Kansas, ill with Spanish influenza at a hospital ward at Camp Funston
Otis Historical Archives Nat'| Museum of Health & Medicine - NCP 1603
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Pandemic Influenza: The Inside Story. Nicholls H, PLoS Biology Vol. 4/2/2006, €50
courtesy of the National Museum of Health and Medicine




2 SYDNEY Hundred years later...

“I had hoped that hitting the 100th
anniversary of this epidemic (Spanish flu)
would spark a lot of discussion about
whether we’re ready for the next global
epidemic. Unfortunately, it didn't, and we
still are not ready”

Bill Gates
Chair of Bill & Melinda Gates Foundation
2018

https://www.gatesnotes.com/About-Bill-Gates/Year-in-Review-2018
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Figure 5. Notifications of laboratory confirmed influenza, Australia, 1 January 2014 to 19 May 2019, by
month and week of diagnosis.
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Figure 5. Notifications of laboratory confirmed influenza, Australia, 1 January 2013 to 30 June 2019, by
month and week of diagnosis.
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Figure 5. Notifications of laboratory confirmed influenza, Australia, 1 January 2013 to 28 July 2019, by
month and week of diagnosis.*
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Susceptible — Infectious — Recovered

A Contribution to the Mathematical Theory of Epidemics.

By W. 0. Kervack and A. G. McKENDRICK.
(Communicated by Sir Gilbert Walker, F.R.S.—Received May 13, 1927.)

(From the Laboratory of the Royal College of Physicians, Edinburgh.)

Introduction.

(1) One of the most striking features in the study of epidemics is the difficulty
of finding a causal factor which appears to be adequate to account for the
magnitude of the frequent epidemics of disease which visit almost every popula-
tion. It was with a view to obtaining more insight regarding the effects of the
various factors which govern the spread of contagious epidemics that the present
investigation was undertaken. Reference may here be made to the work of Ross



Compartmental models in epidemiology:
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Susceptible — Infectious — Recovered
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The accompanying chart is based upon figures of deaths from plague in the island of
Bombay over the period December 17, 1905, to July 21, 1906. The ordinate represents
the number of deaths per week, and the abscissa denotes the time in woeks. As at least
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Susceptible — Infectious — Recovered

Susceptible B Infectious —)

200 T T T T T |
LR
******
* *
* *
480 * .t _
* *
* *
* **
400 * * -
. *
*
* *
*
=S80 . . -
*
* *
.
200 . . -
*
. *
280 * -
* *ﬁﬂ.‘.“"‘
* 'i'*
* * e
200 R . ., -
*
vt : *s
180 . * -
. * .,
- *
* *
100 * * . * -
* - * *
*
: + * «v*
* *
* *
= N F o * +, -
+* *4, * .
-+ ""“ *'&.‘.
b £ PP ey,
0 I I I IR R TR IT YOSy
&0

0 10 20 30 40 a0



THE UNIVERSITY OF

=2 SYDNEY Different questions: How to “zoom in” ? Where to intervene?

. A
" L%
75\’ N
s 0 5 :
J'rq. o
NS
’ ,S‘L\.-"_-J J
P
':fr
{
\I l‘ .\
W
b
F
= i
. ot




THE UNIVERSITY OF

= SYDNEY A little bit more on history...

World Scientific

www.worldscientific.com

Vol. 15, No. 1 (2004) 193-201
(© World Scientific Publishing Company

International Journal of Modern Physics C “
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SPaSM (Scalable Parallel Short-range Molecular dynamics)

Large-Seale Molecular-Dynamiecs Simulation of 19 Billion Particles 195
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Fig. 1. Schematic of a nine PN (0-8) run with square geometry: A spatial decomposition of the
simulation space assigns particles in a rectangle to each PN. The space assigned to each PN is
further subdivided into (square) cells with an edge-length rcep slightly larger than the interaction
cut-off rey¢ of the interaction potential. The interaction is calculated only for particles in the
same cell and for the eight neighboring cells following an interaction path for each cell that only
visits four neighbor cells (see PN 6). If a neighbor cell is located on a different PN (see PN 7),
synchronous message passing is applied.
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...Next step

Mitigation strategies for pandemic influenza

in the United States

Timothy C. Germann**, Kai Kadau*, Ira M. Longini, Jr.*, and Catherine A. Macken*

*Los Alamos National Laboratory, Los Alamos, NM 87545; and *Program of Biostatistics and Biomathematics, Fred Hutchinson Cancer Research Center and
Department of Biostatistics, School of Public Health and Community Medicine, University of Washington, Seattle, WA 98109

Communicated by G. Balakrish Nair, International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh, February 16, 2006

(received for review January 10, 2006)

Recent human deaths due to infection by highly pathogenic (H5N1)
avian influenza A virus have raised the specter of a devastating
pandemic like that of 1917-1918, should this avian virus evolve to
become readily transmissible among humans. We introduce and
use a large-scale stochastic simulation model to investigate the
spread of a pandemic strain of influenza virus through the U.S.
population of 281 million individuals for Rp (the basic reproductive
number) from 1.6 to 2.4. We model the impact that a variety of

resources to minimize the impact of the outbreak? Precise
planning is hampered by several unknowns, most critically the
eventual human-to-human transmissibility of the human-
adapted avian strain (characterized by the basic reproductive
number Ry, the average number of secondary infections caused
by a single typical infected individual among a completely
susceptible population), and the supply of therapeutic agents.
Manufacturers of neuraminidase inhibitors, such as oseltamivir,




. agent-based modelling (Germann et al., 2006)
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» Modelling influenza pandemics with large-scale high-fidelity agent-based models
= demographics: from census based data to agents
= mobility: travel patterns including long-distance
= infection: disease transmission and natural history models

= ACEMod — Australian Census-based Epidemic Model

» Influenza pandemics: effects of urbanisation
= pandemic trends (peaks, prevalence, bimodality)

= key factors: counter-factual analysis

» Interventions: comparison

= efficiency of interventions
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a -
Agents Agent-agent interactions Agent-environment interactions

https://www.bankofengland.co.uk/quarterly-bulletin/2016/qg4/agent-based-models-understanding-the-economy-from-the-bottom-up
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Mixing contexts in our ABM

| —— household

neighbourhood

household cluster

- community

working group
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= anonymous individual (census based) — agents with attributes (e.g., age, gender,
occupation, susceptibility and immunity to diseases)

= |local agent interactions: contacts and disease transmission over about 20M
agents, grouped in social “contexts” (households, workplaces, schools,
classrooms, etc.)

= H1N1 virus (and strains)
= outbreak modelling of pandemic scenarios (international air traffic)
= varying sources and intensity of infection, as well as artificial population sets

= calibration to known data on reproductive ratio R, attack rates (across “contexts”)
and dynamics
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Simulation Modelling Practice and Theory 87 (2018) 412-431

Contents lists available at ScienceDirect
SIMULATION
MODELLING

PRACTICE
ANDTHEORY

Simulation Modelling Practice and Theory

journal homepage: www.elsevier.com/locate/simpat

Investigating spatiotemporal dynamics and synchrony of influenza
epidemics in Australia: An agent-based modelling approach

Check for
updates

Oliver M. Cliff*, Nathan Harding”, Mahendra Piraveenan®, E. Yagmur Erten™”,
Manoj Gambhir®, Mikhail Prokopenko™“

“ Centre for Complex Systems, Faculty of Engineering and IT, University of Sydney, Sydney, NSW 2006, Australia

P Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
€ IBM Research, Melbourne, Australia

9 Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW 2145, Australia




THE UNIVERSITY OF . . . .
SYDNEY  Australian Census based Epidemic Modelling: ACEMod

x 101
—10°F
—30°L
.;ﬂ#jJﬁfﬁwﬂgf//usff‘
—40° |
l

120°



THE UNIVERSITY OF

SYDNEY Australian Census: travel-to-work data (mobility)

108 L m
&2 a i
2 2 11 T
S = 5 [
10 -
E . | E A .
£ 10 = . =
O | o il
o B ] (& "
S ] © L
E 4 B QLJ m
O O
3 ””MMHM : |
= - 1
= = :
o j[ WHWH L.
0 0 2 4 6 8
Dlstance ><105 Distance (m) w104
(a) Workers (b) Students

Fig. B1. Commute distance distributions.




THE UNIVERSITY OF

== SYDNEY Australian Census: schools

600 400
400 -—
200 ;
200 1
0 0
800 | 1 600 |

Frequency
g 3
o o [
f
Frequency
o 8 8

100 - - = - - 200 | - - .
0 [ID H U - |:| - H D | 0 onllno oo m| D O
_‘| OU L L L 1 1 J _200 L L L L L L i
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
School size (students) School size (students)

(a) NSW (b) VIC




THE UNIVERSITY OF

=2y SYDNEY

*

Airport code State City Passengers
SYD NSW Sydney 40884
MEL VIC Melbourne 25859
BNE QLD Brisbane 14250
PER WA Perth 11449
OOL QLD Gold Coast 3022
ADL SA Adelaide 2214
CNS QLD Cairns 1874
DRW NT Darwin 597
TSV QLD Townsville 105

International air traffic

) p. TSV
-,'l'fj;zw ‘*\J‘.‘
.; ~, BNE
“&: .
PER—)» -~ <
=LA N
:\_L‘ J SYD
Nt
MEL

Fig. 3. Daily incoming passengers per Australian international airport obtained from BITRE [30] along with a map detailing the airport locations.
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Table C2

Epidemic modelling: transmission probabilities

Daily transmission probabilities qf_}i for different contact groups g, obtained by Eq. (4) where ,‘3’}?*'_)E are reported by [10].

Contact Group g

Infected Individual j

Susceptible Individual i

Transmission Probability qjg%i

Household size 2

Household size 3

Household size 4

Household size 5

Household size 6

School

Grade
Class

Any

Child (<19)
Child (<19)
Child (<19)

Child (<19)
Adult (>18)
Child (<19)
Adult (>18)
Child (<19)
Adult (=18)
Child (<19)
Adult (>18)
Child (<19)
Adult (=18)
Child (<19)
Child (<19)
Child (<19)

0.0933
0.0393
0.0586
0.0244
0.0417
0.0173
0.0321
0.0133
0.0259
0.0107
0.000292
0.00158
0.035
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Agent-based interactions

Role of social networks in shaping disease

transmission during a community outbreak
of 2009 H1IN1 pandemic influenza

Simon Cauchemez®", Achuyt Bhattarai®, Tiffany L. Marchbanks, Ryan P. Fagan®, Stephen Ostroff<, Neil M. Ferguson?,

David Swerdlow®, and the Pennsylvania H1N1 working group

b.c,2

?Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial
College London, London W2 1PG, United Kingdom; "Centers for Disease Control and Prevention, Atlanta, GA 30333; and “Pennsylvania Department of Health,

Harrisburg, PA 17120-0701

Edited by David Cox, Nuffield College, Oxford, United Kingdom, and approved December 22, 2010 (received for review June 22, 2010)

Evaluating the impact of different social networks on the spread
of respiratory diseases has been limited by a lack of detailed data
on transmission outside the household setting as well as appro-
priate statistical methods. Here, from data collected during a H1N1
pandemic (pdm) influenza outbreak that started in an elementary
school and spread in a semirural community in Pennsylvania, we
quantify how transmission of influenza is affected by social net-
works. We set up a transmission model for which parameters are
estimated from the data via Markov chain Monte Carlo sampling.
Sitting next to a case or being the playmate of a case did not
significantly increase the risk of infection; but the structuring of

sylvania to investigate how social networks and population struc-
tures affect influenza transmission.

Results and Discussion

Outbreak Investigation. Fig. 1 presents the data that were col-
lected during the outbreak investigation. Demographic and
clinical information on 370 (81%) students from 295 (81%)
households and their 899 household contacts was collected
during two rounds of phone interviews (May 16-21 and May 26—
June 2). One hundred twenty-nine (35%) students and 141
(16%) household contacts were reported to have had acute re-
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Fig. 1. Epidemiological data collected in the school. (A) Number of acute respiratory illness (ARI) cases by date of symptom onset for different types of
individuals. (B-D) Survey of fourth graders with (B) seating charts and diagnosis for ARI in classroom C, (C) number of ARI cases by date of symptom onset and
sex among fourth graders, and (D) social networking among fourth graders based on the question "Who are your playmates?” [color of the nodes, red,
female; blue, male; color of the lines, red, girl-girl interaction; cyan, boy-boy interaction; green, boy—girl interaction (one symbol shape per class)]. The
algorithm used to draw the network aims at (i) distributing nodes evenly, (ii) making edge length uniform, (iii) minimizing edge crossings, and (iv) keeping
nodes from coming too close to edges (32, 33) (software: Netdraw). It does not use data on sex to position the nodes.
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Epidemic modelling: contact rates

Table C1
Daily contact probabilities cf.,; for different contact groups g, reported by [22].

Mixing group g Infected individual j Susceptible individual i Contact probability Cf%i
Household cluster Child (<19) Child (<19) 0.08
Child (<19) Adult (>18) 0.035
Adult (>18) Child (<19) 0.025
Adult (=18) Adult 0.04
Working Group Adult (19-64) Adult (19-64) 0.05
Neighbourhood Any Child (0-4) 0.0000435
Any Child (5-18) 0.0001305
Any Adult (19-64) 0.000348
Any Adult (65+) 0.000696
Community Any Child (0-4) 0.0000109
Any Child (5-18) 0.0000326
Any Adult (19-64) 0.000087

Any Adult (65+) 0.000174
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(a) Natural history of the discase. (b) Simulated generation time.

Fig. 2. Natural history of the disease and corresponding simulated generation time. The disease dynamics are modelled as having a linear increase
followed by a linear decrease, as illustrated in Fig. 2 (a). In the figure, the area under the curve is shaded according to the proportion of people at
least that infectious after disease onset (darker representing a higher proportion). If an agent becomes symptomatic, their infectiousness doubles
(dashed blue line) from that day onward. Moreover, 67% of agents become symptomatic; of these agents, 30% start showing symptoms on day 1,
50% on day 2, and the remaining 20% on day 3. We obtain empirical generation times from simulations resulting from this model, shown in 2(b) for
a number of Ry values. The confidence intervals range from 3.35 to 3.39 days (also shown on Fig. 2(a)), depending on R, and, in general, the

generation time has a slight downward trend as a function of disease severity.
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-3
20 x 10 |

— Ry = 1.00

Proportion of incidence

Fig. 5. The epidemic curve illustrates the trajectory of the epidemic by tracing the incidence over time
behaviour of the simulated influenza epidemics in Australia with Ry = {1.0, 1.25, 1.5, 1.75, 2.0}. We perform
plot the mean (solid lines) and standard deviation (shaded area).

“Contagion” (2011)
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Table 1

Characteristics of the incidence curves, averaged over 10 trials.
Basic reproductive number R, 1.0 1.25 1.5 1.75 2.0
Rate of spread: 1K ill* 29 22 21 18 17
10K ill* 44 33 30 25 24
100K ill* 60 44 39 33 31
1M ill* 80 58 50 42 39
Peak of epidemic* 84 63 59 47 47
Daily number of new cases at peak activity 85.3 K 140 K 189 K 257 K 328K
Number of days with > 100K ill 44 55 52 51 48
Cumulative number of ill individuals 3.4 M 5.0 M 6.4 M 7.7 M 8.8 M

1.38 2.67 4.33 6.39 7.70

Synchrony of community epidemic peaks (1073)

M — Million; K — Thousand.
* Days after initial introduction.
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Hierarchical spatial spread or wave-like diffusion??

C. Viboud, O.N. Bjgrnstad, D.L. Smith, L. Simonsen, M.A. Miller, B.T. Grenfell,

Synchrony, waves, and spatial hierarchies in the spread of influenza, Science 312
(5772) (2006) 447-451.

The regional spread of infection correlates more closely with rates of movement of
people to and from their workplaces (workflows) than with geographical distance.

The hierarchy of spread is immediately apparent: The most populous states
exhibit synchronized epidemics, whereas less populated states exhibit more
erratic patterns, both relative to each other and to the continental norm.
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RESEARCH ARTICLE SOCIAL SCIENCES

Urbanization affects peak timing, prevalence, and
bimodality of influenza pandemics in Australia: Results
of a census-calibrated model

Cameron Zachreson'-", Kristopher M. Fair', Oliver M. Cliff', Nathan Harding’, Mahendra Piraveenan' and Mikhail

Prokopenko'

TComplex Systems Research Group, School of Civil Engineering, Faculty of Engineering and IT, The University of Sydney, Sydney, NSW
2006, Australia.

2\Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead, NSW 2145, Australia.

+"Corresponding author. Email: cameron.zachreson@sydney.edu.au
- Hide authors and affiliations

Science Advances 12 Dec 2018:
Vol. 4, no. 12, eaau5294
DOIl: 10.1126/sciadv.aau5294
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SYDNEY International air traffic

Table 1. Average daily incoming international air traffic.

Year

Airport State

2006 2011 2016
Sydney New South Wales 13,214 15,995 19,991
Me|b0ume ................... V Idonasrgﬂsrss? ........... 1 2r802
B”SbaneQueensland5r0535r946 ........... ?,299
Perth .................... WestemAustra“azr?ﬁﬁ45125,906
GOIdcoaStQueenSIand ................. 285 .............. 1'044 ............ 1 '435
Ade |a| de ................ 5 OUth Au St ra | Ia ............... 4 92 ............... ?66 .............. 1 ,1 70 :
Calmsoueemland ................ 1r186 ............. ?07 ............... 8 24
Dar Wm ................. N Orth e m Terr Itory ............ 160 ............... 356 ............... 3 55 -

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Townsville Queensland 0 11 39
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no. of SA2 peaking

Bimodality: 2016
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C — A (2006 with 2016 seed)
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» seeding conditions have a larger impact on the first wave than on the second

» seeding does not account for the decrease in the intensity of the second
pandemic wave from year to year, a trend that we ascribe to increased
urbanisation
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ACEMod (Australian Census-based Epidemic Model): calibrated and validated ABM

= "zooming in" on specific pathways and patterns of epidemics

= studying global spatiotemporal system dynamics: epidemic peaks, prevalence,
waves and bimodality, synchrony, etc.

= contrasting historical periods (Australian census datasets: 2006, 2011, 2016)

= comparing prevention and intervention strategies (“what-if” scenarios)

= planning healthcare resources
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