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TR Spanish Flu 1918: 500 million infected, with deaths of three to five

percent of the world's population

Soldiers from Fort Riley, Kansas, ill with Spanish influenza at a hospital ward at Camp Funston
Otis Historical Archives Nat'l Museum of Health & Medicine - NCP 1603
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Pandemic Influenza: The Inside Story. Nicholls H, PLoS Biology Vol. 4/2/2006, €50
courtesy of the National Museum of Health and Medicine
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“I had hoped that hitting the 100th
anniversary of this epidemic (Spanish flu)
would spark a lot of discussion about
whether we're ready for the next global
epidemic. Unfortunately, it didn't, and we
still are not ready”

Bill Gates
Chair of Bill & Melinda Gates Foundation
2018

https://www.gatesnotes.com/About-Bill-Gates/Year-in-Review-2018
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Figure 5. Notifications of laboratory confirmed influenza, Australia, 1 January 2013 to 28 July 2019, by

month and week of diagnosis.*
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A Contribution to the Mathematical Theory of Epidemics.

By W. O. Keryack and A. G. MCKENDRICK.
(Communicated by Sir Gilbert Walker, F.R.S.—Received May 13, 1927.)

(From the Laboratory of the Royal College of Physicians, Edinburgh.)

Introduction.

(1) One of the most striking features in the study of epidemics is the difficulty
of finding a causal factor which appears to be adequate to account for the
magnitude of the frequent epidemics of disease which visit almost every popula-
tion. It was with a view to obtaining more insight regarding the effects of the
various factors which govern the spread of contagious epidemics that the present
investigation was undertaken. Reference may here he made to the work of Ross
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The accompanying chart is based upon figures of deaths from plague in the island of
Bombay over the period December 17, 1905, to July 21, 1906. The ordinate represents
the number of deaths per week, and the abscissa denotes the time in weeks. As at least
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& - 8
Agents Agent-agent interactions Agent-environment interactions

https://www.bankofengland.co.uk/quarterly-bulletin/2016/g4/agent-based-models-understanding-the-economy-from-the-bottom-up
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= anonymous individuals (census based) — agents with attributes (e.g., age, gender,
occupation, susceptibility and immunity to diseases)

= agent interactions: contacts and disease transmission over about 24M agents,
grouped in social “contexts” (households, neighbourhoods, communities,
workplaces, schools, classrooms, etc.)

= specific virus (transmission rates, natural history of the disease)
= outbreak modelling of pandemic scenarios (international air traffic)
= varying sources and intensity of infection, as well as population sets

= calibration to known data on reproductive ratio R,, attack rates (across “contexts”),
growth rates, generation period, other parameters
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World Scientific

Vol. 15, No. 1 (2004) 193-201 ————
www.worldscientific.com

(© World Scientific Publishing Company
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Mitigation strategies for pandemic influenza

in the United States

Timothy C. Germann*?, Kai Kadau*, Ira M. Longini, Jr.*, and Catherine A. Macken*

*Los Alamos National Laboratory, Los Alamos, NM 87545; and *Program of Biostatistics and Biomathematics, Fred Hutchinson Cancer Research Center and
Department of Biostatistics, School of Public Health and Community Medicine, University of Washington, Seattle, WA 98109

Communicated by G. Balakrish Nair, International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh, February 16, 2006

(received for review January 10, 2006)

Recent human deaths due to infection by highly pathogenic (HSN1)
avian influenza A virus have raised the specter of a devastating
pandemic like that of 1917-1918, should this avian virus evolve to
become readily transmissible among humans. We introduce and
use a large-scale stochastic simulation model to investigate the
spread of a pandemic strain of influenza virus through the U.S.
population of 281 million individuals for Ry (the basic reproductive
number) from 1.6 to 2.4. We model the impact that a variety of

resources to minimize the impact of the outbreak? Precise
planning is hampered by several unknowns, most critically the
eventual human-to-human transmissibility of the human-
adapted avian strain (characterized by the basic reproductive
number Ry, the average number of secondary infections caused
by a single typical infected individual among a completely
susceptible population), and the supply of therapeutic agents.
Manufacturers of neuraminidase inhibitors, such as oseltamivir,



. agent-based modelling (Germann et al., 2006)
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» Modelling pandemics with large-scale high-resolution agent-based models

demographics: from census based data to agents

mobility: travel patterns including long-distance

infection: disease transmission and natural history models

ACEMod - Australian Census-based Epidemic Model

AMTraC-19 — Agent-based Model of Transmission and Control of the
COVID-19 pandemic in Australia

» Influenza pandemics (H1N1):
= pandemic trends (peaks, synchrony, bimodality, critical regimes)
= effects of urbanisation
= counter-factual analysis

= efficiency of interventions: geographically-targeted anti-prophylaxis (GTAP),
contact-targeted anti-prophylaxis (TAP), vaccination
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gepmn e Population partitions:
residential areas and destination zones

Fig. 1 Maps of the Greater Sydney region illustrating the distribution of population partitions. (a) A map of the
Greater Sydney region showing SA2 (black) and SA1 (red) population partitions. (b) A map of the same area
showing SA2 (black) and DZN (red) partitions. The inset in (b) zooms in on the Sydney central business district
to illustrate the much denser packing of DZN partitions in that area.

K. M. Fair, C. Zachreson, M. Prokopenko, Creating a surrogate commuter network from Australian
Bureau of Statistics census data, Scientific Data, 6, 150, 2019.
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Simulation Modelling Practice and Theory 87 (2018) 412-431

Contents lists available at ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier.com/locate/simpat

Investigating spatiotemporal dynamics and synchrony of influenza )

Cheack for

epidemics in Australia: An agent-based modelling approach e

Oliver M. Cliff**, Nathan Harding”, Mahendra Piraveenan®, E. Yagmur Erten™",
Manoj Gambhir®, Mikhail Prokopenko™"

“ Centre for Complex Systems, Faculty of Engineering and IT, University of Sydney, Sydney, NSW 2006, Australia

b Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
“ IBM Research, Melbourne, Australia

A Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW 2145, Australia
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Fig. B1. Commute distance distributions.
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International air traffic

Airport code State City Passengers
SYD NSW Sydney 40884
MEL VIC Melbourne 25859
BNE QLD Brisbane 14250
PER WA Perth 11449
OOL QLD Gold Coast 3022
ADL SA Adelaide 2214
CNS QLD Cairns 1874
DRW NT Darwin 597
TSV QLD Townsville 105
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Fig. 3. Daily incoming passengers per Australian international airport obtained from BITRE [30] along with a map detailing the airport locations.

O. M. CIiff, N. Harding, M. Piraveenan, E. Y. Erten, M. Gambhir, M. Prokopenko, Investigating
Spatiotemporal Dynamics and Synchrony of Influenza Epidemics in Australia: An Agent-Based
Modelling Approach, Simulation Modelling Practice and Theory, 87, 412-431, 2018.
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(a) Natural history of the disease. (b) Simulated generation time.

Fig. 2. Natural history of the disease and corresponding simulated generation time. The disease dynamics are modelled as having a linear increase
followed by a linear decrease, as illustrated in Fig. 2 (a). In the figure, the area under the curve is shaded according to the proportion of people at
least that infectious after disease onset (darker representing a higher proportion). If an agent becomes symptomatic, their infectiousness doubles
(dashed blue line) from that day onward. Moreover, 67% of agents become symptomatic; of these agents, 30% start showing symptoms on day 1,
50% on day 2, and the remaining 20% on day 3. We obtain empirical generation times from simulations resulting from this model, shown in 2(b) for
a number of Ry values. The confidence intervals range from 3.35 to 3.39 days (also shown on Fig. 2(a)), depending on Rg and, in general, the
generation time has a slight downward trend as a function of disease severity.

O. M. CIiff, N. Harding, M. Piraveenan, E. Y. Erten, M. Gambhir, M. Prokopenko, Investigating
Spatiotemporal Dynamics and Synchrony of Influenza Epidemics in Australia: An Agent-Based
Modelling Approach, Simulation Modelling Practice and Theory, 87, 412-431, 2018.
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N. Harding, R. E. Spinney, M. Prokopenko, Phase transitions in spatial connectivity during
influenza pandemics, Entropy, 22(2), 133, 2020.
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Table C2
Daily transmission probabilities qj-"_q for different contact groups g, obtained by Eq. (4) where ﬁf_[ are reported by [10].
Contact Group g Infected Individual j Susceptible Individual i Transmission Probability qf__‘
Household size 2 Any Child (<19) 0.0933
Any Adult (>18) 0.0393
Household size 3 Any Child (<19) 0.0586
Any Adult (>18) 0.0244
Household size 4 Any Child (<19) 0.0417
Any Adult (> 18) 0.0173
Houschold size 5 Any Child (<19) 0.0321
Any Adult (>18) 0.0133
Household size 6 Any Child (<19) 0.0259
Any Adult (>18) 0.0107
School Child (<19) Child (<19) 0.000292
Grade Child (= 19) Child (=19) (1.00158
Class Child (<19) Child (<19) 0.035

Pii(n) =k f(n—n;|j) ¢,

piln)=1-— H H (1 — pj_”(n)) global scalar

gEG(n) | jEAG\1
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Role of social networks in shaping disease

transmission during a community outbreak
of 2009 HIN1 pandemic influenza

Simon Cauchemez®', Achuyt Bhattarai®, Tiffany L. Marchbanks®, Ryan P. Fagan®, Stephen Ostroff¢, Neil M. Ferguson?,

David Swerdlow®, and the Pennsylvania H1N1 working group

b,c,2

®Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial
College London, London W2 1PG, United Kingdom; PCenters for Disease Control and Prevention, Atlanta, GA 30333; and ‘Pennsylvania Department of Health,

Harrisburg, PA 17120-0701

Edited by David Cox, Nuffield College, Oxford, United Kingdom, and approved December 22, 2010 (received for review June 22, 2010)

Evaluating the impact of different social networks on the spread
of respiratory diseases has been limited by a lack of detailed data
on transmission outside the household setting as well as appro-
priate statistical methods. Here, from data collected during a HIN1
pandemic (pdm) influenza outbreak that started in an elementary
school and spread in a semirural community in Pennsylvania, we
quantify how transmission of influenza is affected by social net-
works. We set up a transmission model for which parameters are
estimated from the data via Markov chain Monte Carlo sampling.
Sitting next to a case or being the playmate of a case did not
significantly increase the risk of infection; but the structuring of

sylvania to investigate how social networks and population struc-
tures affect influenza transmission.

Results and Discussion

Outbreak Investigation. Fig. 1 presents the data that were col-
lected during the outbreak investigation. Demographic and
clinical information on 370 (81%) students from 295 (81%)
households and their 899 household contacts was collected
during two rounds of phone interviews (May 16-21 and May 26—
June 2). One hundred twenty-nine (35%) students and 141
(16%) household contacts were reported to have had acute re-
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Fig. 1. Epidemiological data collected in the school. (A) Number of acute respiratory illness (ARI) cases by date of symptom onset for different types of
individuals. (B-D) Survey of fourth graders with (B) seating charts and diagnosis for ARI in classroom C, (C) number of ARI cases by date of symptom onset and
sex among fourth graders, and (D) social networking among fourth graders based on the question “Who are your playmates?” [color of the nodes, red,
female; blue, male; color of the lines, red, girl-girl interaction; cyan, boy-boy interaction; green, boy-girl interaction (one symbol shape per class)]. The
algorithm used to draw the network aims at (i) distributing nodes evenly, (i/) making edge length uniform, (iii) minimizing edge crossings, and (iv) keeping
nodes from coming too close to edges (32, 33) (software: Netdraw). It does not use data on sex to position the nodes.
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Table C1
Daily contact probabilities cf_; for different contact groups g, reported by [22].
Mixing group g Infected individual j Susceptible individual i Contact probability (‘f_i
Household cluster Child (<19) Child (<19) 0.08
Child (<19) Adult (>18) 0.035
Adult (=18) Child (=19) 0.025
Adult (=18) Adult 0.04
Working Group Adult (19-64) Adult (19-64) 0.05
Neighbourhood Any Child (0-4) 0.0000435
Any Child (5-18) 0.0001305
Any Adult (19-64) 0.000348
Any Adult (65+) 0.000696
Community Any Child (0-4) 0.0000109
Any Child (5-18) 0.0000326
Any Adult (19-64) 0.000087
Any Adult (65+) 0.000174

O. M. CIiff, N. Harding, M. Piraveenan, E. Y. Erten, M. Gambhir, M. Prokopenko, Investigating
Spatiotemporal Dynamics and Synchrony of Influenza Epidemics in Australia: An Agent-Based
Modelling Approach, Simulation Modelling Practice and Theory, 87, 412-431, 2018.
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“Contagion” (2011)
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C. Zachreson, K. M. Fair, N. Harding, M. Prokopenko, Interfering with influenza: nonlinear
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O. M. CIiff, N. Harding, M. Piraveenan, E. Y. Erten, M. Gambhir, M. Prokopenko, Investigating
Spatiotemporal Dynamics and Synchrony of Influenza Epidemics in Australia: An Agent-Based
Modelling Approach, Simulation Modelling Practice and Theory, 87, 412-431, 2018.
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Hierarchical spatial spread or wave-like diffusion??

C. Viboud, O.N. Bjgrnstad, D.L. Smith, L. Simonsen, M.A. Miller, B.T. Grenfell,

Synchrony, waves, and spatial hierarchies in the spread of influenza, Science 312
(5772) (2006) 447-451.

The regional spread of infection correlates more closely with rates of movement of
people to and from their workplaces (workflows) than with geographical distance.

The hierarchy of spread is immediately apparent: The most populous states
exhibit synchronized epidemics, whereas less populated states exhibit more
erratic patterns, both relative to each other and to the continental norm.
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Hierarchical spatial spread
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RESEARCH ARTICLE SOCIAL SCIENCES

Urbanization affects peak timing, prevalence, and
bimodality of influenza pandemics in Australia: Results
of a census-calibrated model

Cameron Zachreson'-", Kristopher M. Fair’, Oliver M. Cliff', Nathan Harding’, Mahendra Piraveenan’ and Mikhail
Prokopenko'

TComplex Systems Research Group, School of Civil Engineering, Faculty of Engineering and IT, The University of Sydney, Sydney, NSW
2006, Australia.

2Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead, NSW 2145, Australia.

«"Corresponding author. Email: cameron.zachreson@sydney.edu.au
- Hide authors and affiliations

Science Advances 12 Dec 2018:
Vol. 4, no. 12, eaau5294
DOI: 10.1126/sciadv.aau5294
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Table 1. Average daily incoming international air traffic.

Year

Airport State

2006 2011 2016
Sydney New South Wales 13,214 15,995 19,991
Me|boume ................... V ,Ctona59238557 ........... 1 2802
anbaneQueens|and5053 ............. 5 9467299
Perth ................... WestemAustraha276645125906
Go|dcoastQueens|and ................. 285 .............. 1044 ............ 1 435
Ade|a , de ................ 5 OUthAu Straha ............... 4 92 ............... 766 .............. 1 1 70
Ca"nSQueenS|and ................ 1186 ............. 707 ............... 8 24
Darwm ................. N Orth e m Temtory ............ 160 ............... 356 ............... 3 55
TownSV|||eQueens|and ................... 0 .................. ] 1 ................. 3 9
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C. Zachreson, K. M. Fair, O. M. CIiff, N. Harding, M. Piraveenan, M. Prokopenko, Urbanization
affects peak timing, prevalence, and bimodality of influenza pandemics in Australia: Results of a
census-calibrated model, Science Advances, 4(12), eaau5294, 2018.
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» seeding conditions have a larger impact on the first wave than on the second

» seeding does not account for the decrease in the intensity of the second
pandemic wave from year to year, a trend that we ascribe to increased
urbanisation
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75% compliance, 1 day delay

300 —
—— TAP courses
207 === [ncidence
200 — -= {f1Cidence (no intervention)

AV courses: new illnesses. x 103

150 =
100 —
50—
0 === | | [ vl
0 50 100 150 200

day of pandemic

C. Zachreson, K. M. Fair, N. Harding, M. Prokopenko, Interfering with influenza: nonlinear
coupling of reactive and static mitigation strategies, J. Royal Society Interface, 17(165):
20190728, 2020.
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no. illnesses (TAP)
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efficiency (TAP)
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» Strengths:

= sensitivity analysis is embedded in heterogeneous agents

= Individual-based rather than aggregate focus

= age-dependent epidemic characteristics

= spatial / geographic accuracy

= cross-jurisdictional impact

= time-dependent and context-dependent interventions

= counter-factual analysis (“what-if” scenarios: delays, scale, scope)
= critical phenomena analysis

» Weaknesses:
= need to calibrate multiple parameters

= reliance on high-performance computing
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Network-based modeling
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Network properties of salmonella
epidemics

Oliver M. Cliff(h?, Vitali Sintchenko??, Tania C. Sorrell (%23, Kiranmayi Vadlamudi?,
. Natalia McLean & Mikhail Prokopenko(®*~

© We examine non-typhoidal Salmonella (S. Typhimurium or STM) epidemics as complex systems, driven
. byevolution and interactions of diverse microbial strains, and focus on emergence of successful strains.
. Ourfindings challenge the established view that seasonal epidemics are associated with random

. sets of co-circulating STM genotypes. We use high-resolution molecular genotyping data comprising

- 17,107 STM isolates representing nine consecutive seasonal epidemics in Australia, genotyped by

multiple-locus variable-number tandem-repeats analysis (MLVA). From these data, we infer weighted

. undirected networks based on distances between the MLVA profiles, depicting epidemics as networks
. ofindividual bacterial strains. The network analysis demonstrated dichotomy in STM populations which
. splitinto two distinct genetic branches, with markedly different prevalences. This distinction revealed
. the emergence of dominant STM strains defined by their local network topological properties, such as
- centrality, while correlating the development of new epidemics with global network features, such as

small-world propensity.
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Salmonella epidemics

» 93.8 million cases and 155,000 deaths each year globally

" more cases per capita in Australia than anywhere else in the world

= most fatal foodborne disease in Australia

» S. Typhimuriam (STM) is the dominant subspecies of
non-typhoidal salmonellosis

» Drivers of STM evolution remain poorly understood
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STM in NSW 2008-2016

Crude monthly salmonellosis notification rate per 100,000 population and mean maximum monthly
temperature® in NSW from 2011 — 2015.
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*Bureau of Meteorology, mean maximum monthly temperatures taken from Observatory Hill in Sydney

OzFoodNet. Enhancing Foodborne Disease Surveillance Across Australia. NSW Annual report, 2015.
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Dataset (NSW Salmonella Reference Laboratory)

> Nine consecutive seasons of instances in NSW
= 15t January 2008 to 31t December 2016

» 17,107 isolates of STM
= 99.3% of all STM found from human cases in NSW over 3,287 days

» Genotyped through MLVA
= Multiple-Locus Variable-number tandem repeat (VNTR) Analysis
= 1675 unique MLVAs identified
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What is MLVA?

Tandem repeats

Short tandem repeats 8 repeats |

Participantl CTAGAGATAGATAGATAGATAGATAGATAGATAGATACTAGACTAGACTAG
Participant2 CTAGAGATAGATAGATAGATAGATAGATAGATAGATAGATACTAGACTAGA
Participant3 CTAGAGATAGATAGATAGATAGATAGATAGATAGATAGATACTAGACTAGA
Participant4 CTAGAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATACTAGAC

9 repeats ‘

10 repeats

Image source: https://www.stewartsociety.org/images/bannockburn-tandem-repeats.jpg
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What is MLVA?

Number of tandem repeats
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What is MLVA?

Number of tandem repeats
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What is MLVA?

Number of tandem repeats

3 9 8 9 523

/\

3 9 8 9 2

Larsson et al. (2009)

Larsson, J. T. et al. Development of a new nomenclature for Salmonella Typhimurium multilocus
variable number of tandem repeats analysis (MLVA). Eurosurveillance 14, pii:19174 (2009).



TIHE UNIVERSITY OF

=5 SYDNEY

STM in NSW 2008-2016

Top 10 Salmonella Typhimurium MLVA profiles and number of isolates from 2011-2015, NSW*

2011 2012 2013 2014 2015
1 3-9-7-13-523(259) 3-17-9-12-523(150) 3-17-9-12-523(159) 3-17-9-11-523(210)  3-12-11-14-523 (100)
2 3-10-8-9-523(149) 3-9-8-13-523(124)  3-9-8-13-523 (83) 3-12-11-14-523 (149)  3-17-9-11-523 (91)
3 3-9-8-13-523(113) 3-9-7-13-523(100)  3-9-7-13-523 (74) 3-12-12-9-523 (141)  3-12-12-9-523(82)
4 3-9-7-14-523(92)  3-16-9-12-523(66)  3-10-14-12-496(61)  3-10-7-12-523(99) 3-12-13-9-523 (54)
5  3-12-9-10-550(76) 3-10-8-9-523 (50) 3-10-7-14-523 (55)  3-9-7-12-523 (98) 3-24-13-10-523 (53)
6 3-9-7-15-523(59)  3-9-8-12-523(38) 3-13-11-9-523 (48)  3-9-8-12-523 (97) 3-10-8-12-523 (42)
7  3-14-11-12-523(50) 3-9-8-14-523 (38) 3-9-7-14-523 (45) 3-16-9-11-523 (94) 3-9-7-12-523 (40)
8  3-10-14-12-496 (48) 3-9-9-13-523(37) 3-23-23-11-523 (43)  3-17-10-11-523(94)  3-17-8-11-523(39)
9  3-12-15-13-52346) 3-9-9-12-523 (34) 3-10-8-9-523 (39) 3-10-13-11-496 (52)  3-16-9-11-523 (37)
10 3-13-11-9-523(30) 3-12-11-13-523(29) 3-17-9-11-523(39)  3-16-9-12-523(50) 3-24-14-10-523 (33)

*Colour code indicates closely related MLVA patterns.

OzFoodNet. Enhancing Foodborne Disease Surveillance Across Australia. NSW Annual report, 2015.
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MLVA isolates as a complex network

» Construct a complete graph

= 1675 nodes (unique MLVA profiles)

= edge weights are inverse of pairwise MLVA distance

» Compute closeness centrality of MLVA profile in network

» Cluster nodes (MLVA profiles)
= partitioned clusters

= overlapping clusters

» Trace changes in the global network and individual clusters
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Complex network analysis: distance

» Edge weights

= |nverse of Manhattan distance (L1-norm)

x 3 9 8 9 2 12
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Complex network analysis: distance

» Edge weights

= |nverse of Manhattan distance (L1-norm)

x 3 9 8 9 2 12
y 3 10 8 8 2 12



Complex network analysis: distance

» Edge weights

= |nverse of Manhattan distance (L1-norm)

x 3 9 8 9 2 12
y 3 10 8 8 2 12

dix,y) 0 |+1] 0 |-1] O 0




Complex network analysis: centrality

» Edge weights

= |nverse of Manhattan distance (L1-norm)

x 3 9 8 9 2 12
y 3 10 8 8 2 12

dix,y) 0 |+1] 0 |-1] O 0

> Closeness centrality C(x) =
2.y d(x,y)

Path length: average distance to all other nodes
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Closeness centrality of MLVA profiles
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Network of MLVA profiles
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Global network properties: average path length

3000 ; :

2500 117 =
& W v e
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< e
= 2000 "V 3
- 3
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1000 L L 1 L 1 1 L 14
2008 2009 2010 2011 2012 2013 2014 2015
Year

Average path length (average distance to all other nodes)

correlates with prevalence: p = 0.7 at ~100 days
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Global network properties: clustering coefficient

3000 ' y . , , , y 20
19.5
2500 |- 19 =
) A 5
@ I8.5 -:E
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S - <
§ 2000 /\ﬂ‘ 18 o
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i "/ l T ) ’:
) 7
1500 | : 117 O
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1000 ! ! I L L L L 16
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Clustering coefficient (how well node's neighbours are connected among themselves)

correlates with prevalence: p = 0.7 at ~50 days
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Small-world networks

Small-world

Increasing randomness

Watts, D., Strogatz, S. Collective dynamics of ‘small-world’ networks. Nature 393, 440-442 (1998).
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Small-world networks
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Watts, D., Strogatz, S. Collective dynamics of ‘small-world’ networks. Nature 393, 440-442 (1998).
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Global network properties: small-world coefficient

C/C}and

3000 , I g = I , , -1.38

L/Lrand 41.17
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Small-world coefficient (ratio of clustering coefficient to path length)

correlates with prevalence: p = 0.6 at ~300 days
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Clustering
Linkage (partitioning) approach Overlapping approach
..,
A o.\-: y

O. M. CIliff, V. Sintchenko, T. C. Sorrell, K. Vadlamudi, N. McLean, M. Prokopenko, Network
properties of Salmonella epidemics, Scientific Reports, 9, 6159, 2019



TIHE UNIVERSITY OF

SYDNEY

Temporal evolution of clusters
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Prevalence-Centrality plot (overlapping clusters)

10% |

10! |

Average Cluster Prevalence

100 | -|..._.._ L i 1 1 | 10(]
0.03 0.04 0.05 0.06 0.07 0.08

Focal Node Centrality

Colours denote distance to the node with the highest average cluster prevalence
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Network-based modelling of Salmonella

» inferred undirected STM networks from surveillance and molecular
genotyping data

» quantified diversity and variability of evolving STM networks

» correlated small-world network properties with the epidemic severity

» identified two distinct evolutionary branches in terms of centrality

» suggested to monitor ongoing STM population diversity and focus on
new genotypes as reservoirs from which future epidemics might emerge
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