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Abstract. This paper investigates cluster formation in decentralized sensor grids
and focusses on predicting when the cluster formation converges to a stable con-
figuration. The traffic volume of inter-agent communications is used, as the un-
derlying time series, to construct a predictor of the convergence time. The predic-
tor is based on the assumption that decentralized cluster formation creates multi-
agent chaotic dynamics in the communication space, and estimates irregularity
of the communication-volume time series during an initial transient interval. The
new predictor, based on the auto-correlation function, is contrasted with the pre-
dictor based on the correlation entropy (generalized entropy rate). In terms of
predictive power, the auto-correlation function is observed to outperform and be
less sensitive to noise in the communication space than the correlation entropy.
In addition, the preference of the auto-correlation function over the correlation
entropy is found to depend on the synchronous message monitoring method.

1 Introduction

There is a distinction between “Sensor Networks” and “Sensor Grids”, as pointed out
in recent literature (e.g., [3]): “whereas the design of a sensor network addresses the
logical and physical connectivity of the sensors, the focus of constructing a sensor grid
is on the issues relating to the data management, computation management, informa-
tion management and knowledge discovery management associated with the sensors
and the data they generate”. One significant issue addressed by sensor grids is dynamic
sensor-data clustering, aimed at grouping entities with similar characteristics together
so that main trends or unusual patterns may be discovered. This is investigated as decen-
tralized clustering in multi-agent Systems [9], dynamic cluster formation in mobile ad
hoc networks [7] and decentralized sensor arrays [8, 13, 10]. The latter studies describe
dynamic cluster formation asself-organisationof dynamic hierarchies, with multiple
cluster-heads emerging as a result of inter-agent communications, and indicates that
decentralized clustering algorithms deployed in multi-agent systems are “hard to eval-
uate precisely for the reason of the diminished predictability brought about by self-
organisation”. The results presented in [13] identified a predictor for the convergence
time of dynamic cluster formation, based on the traffic volume of asynchronous inter-
agent communications. Following this study, we attempt to adapt a decentralized clus-
tering algorithm to a specific topology (a rectilinear grid) and replace a complicated
predictor with a more simple measure, based on synchronized aggregation of multi-
agent communications.



Our goal is predicting when the cluster formation will converge to a stable configu-
ration. In achieving this goal, we consider an underlying time series, the traffic volume
of inter-agent communications, and relate its irregularity during an initial interval to the
eventual convergence time. Clearly, the shorter the initial interval is, the more efficient
is the prediction: e.g., when a predicted value exceeds a threshold, agents may adjust
parameters and heuristics used in the clustering process.

A simplified version of a decentralized adaptive clustering algorithm developed for
evaluation purposes is described in the next section. Section 3 presents the proposed
predictor for the convergence time of cluster formation, followed by a discussion of the
obtained results.

2 Dynamic Cluster Formation Algorithm

A sensor grid node communicates only with immediate neighbours: all data are pro-
cessed locally, and only information relevant to other regions of the structure is com-
municated as a multi-hop message. A cluster-head may be dynamically selected among
the set of nodes and become a local coordinator of transmissions within the cluster.
Clusters may re-form when new data is obtained on the basis of local sensor signals.
Importantly, a cluster formation algorithm should be robust to such changes, failures of
individual nodes, communication losses, etc.

As pointed out earlier, our main goal is an analysis of a representative clustering
technique in a dynamic and decentralized multi-agent setting, exemplified by a rectilin-
ear sensor grid,in terms of predictability of its convergence time. We represent a node
sensory reading with a single aggregated value, define “differences” between cells in
terms of this value, and cluster nodes while minimizing these “differences”.

The algorithm input is a series of events detected at different times and locations,
while the output is a set of non-overlapping clusters, each with a dedicated cluster-head
(a network node) and a cluster map of its followers in terms of their sensor-data and rel-
ative grid coordinates. The algorithm is described elsewhere [8] and involves a number
of inter-agent messages notifying agents about their sensory data, and changes in their
relationships and actions. For example, an agent may send a recruit message to another
agent, delegate the role of cluster-head to another agent, or declare “independence” by
initiating a new cluster. Most of these and similar decisions are based on the clustering
heuristic described by Ogston et al. [9], and a dynamic offset range [8]. This heuris-
tic determines if a cluster should be split in two, and the location of this split. Each
cluster-head (initially, each agent) broadcasts itsrecruit message periodically, with a
broadcasting-period, affecting all agents with values within a particular dynamic offset
of the sensor reading detected by this agent. Everyrecruit message contains the sensor-
data of all current followers of the cluster-head with their relative coordinates (a cluster
map). Under certain conditions, an agent, which is not a follower in any cluster, receiv-
ing arecruit message becomes a follower, stops broadcasting its ownrecruit messages
and sends its information to its new cluster-head indicating its relative coordinates and
the sensor reading. However, there are situations when the receiving agent is already a
follower in some cluster and cannot accept a recruit message by itself — a recruit dis-
agreement. In this case, this agentforwardsthe received recruiting request to its present



cluster-head. Every cluster-head waits for a certain period, collecting all suchforward
messages, at the end of which the clustering heuristic is invoked on the union set of
present followers and all agents whoforwardedtheir new requests [8, 13]. The cluster-
head which invoked the heuristic notifies new cluster-heads about their appointment,
and sends their cluster maps to them: acluster-informationmessage.

Here we consider an important variant of this algorithm, obtained by modifying
both the message passing mechanism and the message monitoring method. First of all,
instead of sending aforward message by broadcasting or “flooding” which makes the
system quite resilient to noise, we use point-to-point messages incorporating relative
grid coordinates, routed through the grid using these coordinates. Secondly, given a
reduction in the communication traffic resulting from point-to-point messages, we em-
ploy a message monitoring method which allows to more precisely count inter-agent
messages for each relative unit of system time. This essentially means that, instead of
counting messages asynchronously (separately for each node) and aggregating these
amounts for an abstract unit of time, we synchronize the system and precisely aggre-
gate all messages for each time point. This is not always feasible and may incur a high
cost, but the expected tradeoff is the simplicity and performance of new predictors.

In addition, using point-to-point messages is a less reliable method, and we specifi-
cally introduced errors in the message-passing mechanism, simulating noise in the com-
munication space — in order to verify robustness of the predictors. The new point-to-
point messages significantly reduce the communication traffic, without affecting quality
(measured by the weighted average cluster diameter [18]) and convergence (measured
by the number of times the clustering heuristic was invoked before stability is achieved).
While the simulation results show that the algorithm robustly converges and scales well
in all cases, the convergence time varies significantly (Figure 1 and Figure 2) — high-
lighting the need for its better prediction.

The cluster formation is driven by three message types:recruit, cluster-information,
and forward messages. The first two types are periodic, while the latter type depends
only on the degree of disagreements among cluster-heads. The number offorwardmes-
sages traced in time — the traffic volume of inter-agent communications — provides
the underlying time series{v(t)} for our predictive analysis.

3 Regularity of multi-agent communication-volume

In this section, we focus on our main objective: prediction of the convergence timeT ,
based on regularity of an initial segment0, ...,D of the “communication-volume” series
{v(t)}, whereD < T andv(t) is the number offorwardmessages at timet.

It is known that in many experiments, time series often exhibit irregular behav-
ior during an initial interval before finally settling into an asymptotic state which is
non-chaotic [1] — in our case, eventually converging to a fixed-point (v(T ) = 0). The
irregular initial part of the series may, nevertheless, contain valuable information: this is
particularly true when the underlying dynamics is deterministic and exhibitstransient
chaos[1, 5]. It was conjectured and empirically verified [13] that the described algo-
rithm for dynamic cluster formation createsmulti-agent transient chaotic dynamics.
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Fig. 1. Varying convergence timesTs for 4 different experiments,1 ≤ s ≤ 4, without noise.
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Fig. 2. Varying convergence timesTs for 4 different experiments, with noise.



We intend to follow the same path as the previous study [13], but streamline the
predictor estimation by using a simple auto-correlation function as a measure of regu-
larity during the initial interval. For each experiments, we a) select an initial segment of
lengthD of the time series; and b) compute the regularity predictor: the auto-correlation
functionγ(D, τ)s for a range of integer delaysτ :

γ(D, τ)s =
D∑

t=τ+1

[vs(t− τ)− vs] [vs(t)− vs] /

D∑
t=1

[vs(t)− vs]2 , (1)

wherevs is the series mean. Then, c) given the estimatesγ(D, τ)s for all the experi-
ments, correlate them with the observed convergence timesTs by using a linear regres-
sionT = a+ bγ(D, τ) and the correlation coefficientρ(τ) between the series{Ts} and
{γ(D, τ)s}. This would allow us to predict the timeTs of convergence tovs(Ts) = 0,
asTs = a + bγ(D, τ̂)s, for the delaŷτ providing the best fit: the maximum ofρ(τ).

The auto-correlation is obviously limited to measuring only linear dependencies,
and the study [13] considered a more general and elaborate approach, based on the
Kolmogorov-Sinai entropyK, also known as metric entropy [6, 16], and its generaliza-
tion to the order-q Rényi entropyKq [15]. The entropyK or Kq is an entropy per unit
time, or an “entropy rate”, and is a measure for the rate at which information about the
state of the system is lost in the course of time. In particular, the predictor estimated the
“correlation entropy”K2 using Grassberger and Procaccia algorithm [4]. The predictor
based onK2 uses the initial segment of lengthD of the observed time series{v(t)} in
“converting” or “reconstructing” the dynamical information in one-dimensional data to
spatial information in theτ -dimensional embedding space [17], and also depends on
the lengthD and the embedding dimensionτ .

The auto-correlation functionγ(D, τ), equation (1), was reported to be not suffi-
cient for predictive purposes: the highest correlation coefficientρ(τ) between conver-
gence timesTs and auto-correlationsγ(D, τ)s, for a range of delaysτ , was only0.52,
while the predictor based on the entropyK2 attained the maximumρ = 0.90. In the
following section we shall contrast these two measures,γ(D, τ) andK2(D), for the
new communication and monitoring mechanisms, with and without noise.

4 Experimental Results

The experiments included three scenarios: (i) noiseless communications; (ii)1% loss of
messages; and (iii)2% loss of messages. Each scenario included20 runs of the cluster-
ing algorithm on an8× 8 grid with 50 events, tracing the communication-volume time
series{v(t)}. We then selected an initial segmentD = 800, and carried out the steps
b) and c) described in the previous section. Given data ofs = 1, ..., 20 experiments:
the2-dimensional arrayγ(D, τ)s for varying τ and eachs, the correlation coefficient
ρ({Ts}, {γ(D, τ)s}) was determined for the range ofτ , based on the auto-correlation
predictorγ(D, τ) . The data are plotted in Figure 3 for the scenarios (i), (ii) and (iii).
The corresponding maximum values ofρ(τ̂) degrade with noise as expected: from (i)
ρ(8) = 0.98 to (ii) ρ(23) = 0.82 to (iii) ρ(91) = 0.69. As the level of noise grows, the
maximums are attained at increasing delaysτ : (i) τ̂ = 8; (ii) τ̂ = 23; and (iii) τ̂ = 91.



At the same time, the predictor based onK2(D) was sensitive to the higher noise levels:
the best obtained correlation values were: (i)ρ(71) = 0.83, (ii) ρ(89) = 0.83, and (iii)
ρ(72) = 0.37, as shown in Figure 4. Without noise it performed as expected, main-
tained the performance under1% loss of messages, but the increase in the noise by an
extra percent resulted in more than50% loss in predictive power. This can simply be
explained by the fact that the extra noise made the underlying dynamics unstructured in
the phase space created by the considered embedding dimensions [13], and this can be
recovered by increasing their number. Nevertheless, from a practical point of view, it is
rarely feasible, and the alternative predictor based on a simple auto-correlation function,
is preferable as it is less sensitive to noise in the communication space.
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Fig. 3. The correlation coefficientρ between the series{Ts} and predictor{γ(D, τ)s}, for the
scenarios (i) solid lines, (ii) dashed lines, and (iii) dotted lines.

We would like to point out that the noise in communication space (missed messages)
considered in this paper should be distinguished from the noise in the traffic monitoring
method created by its own asynchrony. The preference of the auto-correlation function
over the correlation entropy, as the convergence time predictor, is conditional on the
synchronous message monitoring method. If the underlying communication traffic is
estimated asynchronously, then the observations reported in [13] indicate that the corre-
lation entropy is preferred to the auto-correlation function (even in the presence of noise
in the communication space). The reason for this difference is the calculation of corre-
lations: the auto-correlation function simply “matches” separate time points (therefore,
it is sensitive to shifts in the time series brought about by asynchronous monitoring),
while the correlation entropy “matches” patterns or templates in the time series and is,
hence, resilient to possible shifts due to asynchronous monitoring.
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Fig. 4. The correlation coefficientρ between the series{Ts} and predictor{K2(D)s}, for the
scenarios (i) solid lines, (ii) dashed lines, and (iii) dotted lines (the last scenario did not have a
sufficiently long time series to embed in higher dimensions).

5 Conclusions

We considered decentralized and dynamic cluster formation in multi-agent sensor grids,
proposed and experimentally evaluated a new predictor for the convergence time of
cluster formation. The new predictor, based on the auto-correlation functionγ(D, τ),
was contrasted with the predictorK2(D) based on the generalized correlation entropy
of the volume of the inter-agent communications [13].

The results indicate that either predictor can be well correlated with the time of clus-
ter formation. However, their applicability depends on the type of the communication
traffic’s monitoring: if the employed measure is asynchronous thenK2(D) is preferred,
otherwise, if messages can be aggregated synchronously, the auto-correlation function
γ(D, τ) should be preferred. In addition, the correlation entropyK2(D) was shown to
be adversely affected, as a predictor, by noise in the communication space.

Efficient and reliable algorithms for cluster formation in sensor grids may include
a convergence predictor as a feedback to the algorithms. Such predictors are unlikely
to implement measures with a global view, when full information on nodes’ states and
their inter-connections is available. Instead, a more promising approach is to develop
measures that can work with partial information, obtained locally:localizablemeasures
[14, 11, 12, 2]. The analysis and results presented here and in [13] make a step towards
localizable measures defined on the inter-agent communication space, and highlights
their applicability in decentralized, dynamic and asynchronous sensor grids. Another
direction of future research is scale-free sensor grids.
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