The Edge of Chaos and Undecidable Dynamics Collaborators: Michael Harré, Joseph T. Lizier, Fabio Boschetti, Pavlos Peppas, Stuart Kauffman Prof. Mikhail Prokopenko Centre for Complex Systems Faculty of Engineering The 3rd International Symposium on Complexity, Criticality and Computation (C³-2019) Sydney, 2 December 2019 ### Acknowledgements Available online at www.sciencedirect.com #### **ScienceDirect** Physics of Life Reviews 31 (2019) 134-156 www.elsevier.com/locate/plrev #### Review # Self-referential basis of undecidable dynamics: From the Liar paradox and the halting problem to the edge of chaos Mikhail Prokopenko ^{a,*}, Michael Harré ^a, Joseph Lizier ^a, Fabio Boschetti ^b, Pavlos Peppas ^{c,d}, Stuart Kauffman ^e ^a Centre for Complex Systems, Faculty of Engineering and IT, The University of Sydney, NSW 2006, Australia ^b CSIRO Oceans and Atmosphere, Floreat, WA 6014, Australia ^c Center for AI, School of Software, FEIT, University of Technology Sydney, NSW 2007, Australia ^d Department of Business Administration, University of Patras, Patras 265 00, Greece ^e University of Pennsylvania, Philadelphia, PA 19104, USA Available online 8 January 2019 - Edge of chaos, criticality and phase transitions - Complex systems are dynamical systems with undecidable dynamics - The Liar paradox and the halting problem - Self-reference (and diagonalisation) - Meta-simulation and novelty generation - Edge of chaos, criticality and phase transitions - Complex systems are dynamical systems with undecidable dynamics - The Liar paradox and the halting problem - Self-reference (and diagonalisation) - Meta-simulation and novelty generation # Motivation: dynamics of computation Chris Langton, "Computation at the edge of chaos: Phase transitions and emergent computation" (1991): - how can emergence of computation be explained in a *dynamic* setting? - how is it related to *complexity* of the system in point? ### Swarming (collective) motion E. Crosato, R. Spinney, R. Nigmatullin, J. T. Lizier, M. Prokopenko, Thermodynamics of collective motion near criticality, *Physical Review E*, 97, 012120, 2018. # Edge of chaos in collective motion - Edge of chaos, criticality and phase transitions - Complex systems are dynamical systems with undecidable dynamics - The Liar paradox and the halting problem - Self-reference (and diagonalisation) - Meta-simulation and novelty generation - 1. Deaths. Any live cell with fewer than two or more than three live neighbours dies. - 2. Survivals. Any live cell with two or three live neighbours lives on to the next generation. - 3. Births. Any dead cell with exactly three live neighbours becomes a live cell. # Game of Life: convergence? # Game of Life: convergence? - Edge of chaos, criticality and phase transitions - Complex systems are dynamical systems with undecidable dynamics - The Liar paradox and the halting problem - Self-reference (and diagonalisation) - Meta-simulation and novelty generation # The Liar paradox # Turing Machine (...not that one) The Imitation Game, 2014 # **Turing Machine** # **Turing Machine** Progress of the computation (state-trajectory) of a 3-state busy beaver # Universal Turing Machine: can simulate any other machine # Universal Decider Turing Machine: does it exist? $$P([M, w]) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$ M. Prokopenko, M. Harré, J. Lizier, F. Boschetti, P. Peppas, S. Kauffman, Self-referential basis of undecidable dynamics: from The Liar Paradox and the halting Problem to the edge of chaos, *Physics of Life Reviews*, 31: 134-156, 2019. # Universal Decider Turing Machine: does it exist? $$P([M, w]) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$ $$V([M]) = \begin{cases} reject & \text{if } M \text{ accepts } [M] \\ accept & \text{if } M \text{ does not accept } [M] \end{cases}$$ # Universal Decider Turing Machine: does not exist! $$P([M, w]) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$ $$V([M]) = \begin{cases} reject & \text{if } M \text{ accepts } [M] \\ accept & \text{if } M \text{ does not accept } [M] \end{cases}$$ $$V([V]) = \begin{cases} reject & \text{if } V \text{ accepts } [V] \\ accept & \text{if } V \text{ does not accept } [V] \end{cases}$$ ## The Liar paradox - Edge of chaos, criticality and phase transitions - Complex systems are dynamical systems with undecidable dynamics - The Liar paradox and the halting problem - Self-reference (and diagonalisation) - Meta-simulation and novelty generation #### Self-reference DNA: genetic instructions (sequence) used in development and functioning of a living organism (structure) – a set of "blueprints" needed to construct other components of cells, and copy itself ### Self-reference #### **Drawing Hands:** the product, the hands, are undertaking the operation – the drawing of the hands #### El Farol Bar Problem: if less than 60% of the population go to the bar, then •••••• if more than 60% of the population go to the bar, then Table 3 The cell i, j is 'accept' if M_i accepts $[M_j]$ | 95 | $[M_1]$ | $[M_2]$ | $[M_3]$ | | |-------|---------|---------|---------|-----| | M_1 | accept | | accept | | | M_2 | accept | accept | accept | | | M_3 | | accept | | | | • | | · | | | | | | • | | · . | M. Prokopenko, M. Harré, J. Lizier, F. Boschetti, P. Peppas, S. Kauffman, Self-referential basis of undecidable dynamics: from The Liar Paradox and the halting Problem to the edge of chaos, *Physics of Life Reviews*, 31: 134-156, 2019. universal decider Table 3 The cell i, j is 'accept' if M_i accepts $[M_j]$ | | $[M_1]$ | $[M_2]$ | $[M_3]$ | | |------------------|---------|---------|---------|------| | $\overline{M_1}$ | accept | | accept | | | M_2 | accept | accept | accept | | | M_3 | | accept | | | | • | | • | | ¥.,, | | : | | • | | | Table 4 The cell i, j is the outcome of running P on $[M_i[M_j]]$. | | 12 Table | 242.4 | English a | | |-------|---|---------|-----------|-------| | | $[M_1]$ | $[M_2]$ | $[M_3]$ | • • • | | M_1 | accept | reject | accept | | | M_2 | accept | accept | accept | | | M_3 | reject | accept | reject | | | | | ¥. | | | | | | * | | • | -- inverter of universal decider Table 5 The cell (k, j) is the outcome of running $V = M_k$ (the inverter of P) on $[M_k[M_j]]$ | | $[M_1]$ | $[M_2]$ | $[M_3]$ | • • • | $[M_k]$ | | |------------------|---------|---------|---------|-------|---------|---| | $\overline{M_1}$ | accept | reject | accept | | accept | | | M_2 | accept | accept | accept | • • • | reject | | | M_3 | reject | accept | reject | | reject | | | | |
* | | | | | | M_k | reject | reject | accept | | | | | • | | : | | | | • | inverter of universal decider Table 5 The cell (k, j) is the outcome of running $V = M_k$ (the inverter of P) on $[M_k[M_j]]$. A contradiction occurs at cell (k, k). | | $[M_1]$ | $[M_2]$ | $[M_3]$ | • • • • | $[M_k]$ | ••• | |-------|---------|---------|---------|---------|---|-----| | M_1 | accept | reject | accept | | accept | | | M_2 | accept | accept | accept | | reject | | | M_3 | reject | accept | reject | | reject | | | | | :
: | | ٠. | | | | M_k | reject | reject | accept | | $\left(\begin{array}{c} \underline{?} \end{array}\right)$ | | | | | | | | Shippy | | | | | i | | | th | is | $\mathcal{F} \vdash \gamma \leftrightarrow \neg \text{Provable}_{\mathcal{F}}(\lceil \gamma \rceil)$ -- inverter of universal decider Table 5 The cell (k, j) is the outcome of running $V = M_k$ (the inverter of P) on $[M_k[M_j]]$. A contradiction occurs at cell (k, k). | | $[M_1]$ | $[M_2]$ | $[M_3]$ | • • • • | $[M_k]$ | • • • | |-------|---------|---------|---------|---------|---|-------| | M_1 | accept | reject | accept | | accept | | | M_2 | accept | accept | accept | • • • | reject | | | M_3 | reject | accept | reject | | reject | | | | | ¥
* | | | | | | M_k | reject | reject | accept | | $\left(\begin{array}{c} \underline{?} \end{array}\right)$ | | | | | * | | | | | | | | į | | | | - 7 | $$\mathcal{F} \vdash \gamma \leftrightarrow \neg \text{Provable}_{\mathcal{F}}(\lceil \gamma \rceil)$$ - Edge of chaos, criticality and phase transitions - Complex systems are dynamical systems with undecidable dynamics - The Liar paradox and the halting problem - Self-reference (and diagonalisation) - Meta-simulation and novelty generation # Universal Cellular Automata: a Metapixel ### Conclusions $$\mathcal{F} \vdash \gamma \leftrightarrow \neg \text{Provable}_{\mathcal{F}}(\lceil \gamma \rceil)$$ - recursive formal systems, Turing machines and Cellular Automata are deeply related - these frameworks can produce universal computation and generate undecidable dynamics - undecidability is generated by self-reference, infinite computation and negation - computational novelty can be created by agents using the diagonalization argument - complex systems are dynamical systems with undecidable dynamics # THE UNIVERSITY OF SYDNEY #### References - Bennett C. H. Undecidable dynamics. *Nature*, 346: 606–607, 1990. - Buldt B. On fixed points, diagonalization, and self-reference. In: Freitag W, Rott H, Sturm H, Zinke A, eds. Von Rang und Namen: essays in honour of Wolfgang Spohn. Münster: Mentis, 47–63, 2016. - Casti J. L. Chaos, Gödel and truth. In: Casti J. L, Karlqvist A., eds. Beyond belief: randomness, prediction, and explanation in science. CRC Press, 1991. - Cook M. Universality in elementary Cellular Automata. Complex Systems, 15(1): 1–40, 2004. - Crosato E., Spinney R., Nigmatullin R., Lizier J., Prokopenko M. Thermodynamics of collective motion near criticality, *Physical Review E*, 97: 012120, 2018. - Gaifman H. Naming and diagonalization, from Cantor to Gödel to Kleene. Logic Journal of the IGPL, 14(5): 709–728, 2006. - Ilachinski A. Cellular Automata: a discrete universe. Singapore: World Scientific, 2001. - Kauffman S. Humanity in a creative universe. New York, NY, USA: Oxford University Press, 2016. - Langton C. G. Computation at the edge of chaos: phase transitions and emergent computation. *Physica D*, 42(1–3): 12–37, 1990. - Markose S. M. Novelty in complex adaptive systems (CAS) dynamics: a computational theory of actor innovation. Physica A: Statistical Mechanics and its Applications, 344(1): 41–49, 2004. - Moore C. Unpredictability and undecidability in dynamical systems. *Physical Review Letters*, 64(20): 2354–2357, 1990. - Prokopenko M., Harré M., Lizier J., Boschetti F., Peppas P., Kauffman S., Self-referential basis of undecidable dynamics: from The Liar Paradox and the halting Problem to the edge of chaos. *Physics of Life Reviews*, 31: 134-156, 2019. - Sipser M. *Introduction to the theory of computation*, 1st edition. Thomson Publishing: International, 1996. - Sutner K. Computational classification of Cellular Automata. International Journal of General Systems, 41(6): 595–607, 2012. - Wolfram S. A new kind of science. Champaign, Illinois, US, United States: Wolfram Media Inc., 2002.