# The Edge of Chaos and Undecidable Dynamics

Collaborators: Michael Harré, Joseph T. Lizier, Fabio Boschetti, Pavlos Peppas, Stuart Kauffman

Prof. Mikhail Prokopenko
Centre for Complex Systems
Faculty of Engineering



The 3<sup>rd</sup> International Symposium on Complexity, Criticality and Computation (C<sup>3</sup>-2019) Sydney, 2 December 2019



### Acknowledgements





Available online at www.sciencedirect.com

#### **ScienceDirect**



Physics of Life Reviews 31 (2019) 134-156

www.elsevier.com/locate/plrev

#### Review

# Self-referential basis of undecidable dynamics: From the Liar paradox and the halting problem to the edge of chaos

Mikhail Prokopenko <sup>a,\*</sup>, Michael Harré <sup>a</sup>, Joseph Lizier <sup>a</sup>, Fabio Boschetti <sup>b</sup>, Pavlos Peppas <sup>c,d</sup>, Stuart Kauffman <sup>e</sup>

<sup>a</sup> Centre for Complex Systems, Faculty of Engineering and IT, The University of Sydney, NSW 2006, Australia
 <sup>b</sup> CSIRO Oceans and Atmosphere, Floreat, WA 6014, Australia
 <sup>c</sup> Center for AI, School of Software, FEIT, University of Technology Sydney, NSW 2007, Australia
 <sup>d</sup> Department of Business Administration, University of Patras, Patras 265 00, Greece
 <sup>e</sup> University of Pennsylvania, Philadelphia, PA 19104, USA

Available online 8 January 2019





- Edge of chaos, criticality and phase transitions
- Complex systems are dynamical systems with undecidable dynamics
- The Liar paradox and the halting problem
- Self-reference (and diagonalisation)
- Meta-simulation and novelty generation





- Edge of chaos, criticality and phase transitions
- Complex systems are dynamical systems with undecidable dynamics
- The Liar paradox and the halting problem
- Self-reference (and diagonalisation)
- Meta-simulation and novelty generation



# Motivation: dynamics of computation

Chris Langton, "Computation at the edge of chaos: Phase transitions and emergent computation" (1991):

- how can emergence of computation be explained in a *dynamic* setting?
- how is it related to *complexity* of the system in point?





### Swarming (collective) motion



E. Crosato, R. Spinney, R. Nigmatullin, J. T. Lizier, M. Prokopenko, Thermodynamics of collective motion near criticality, *Physical Review E*, 97, 012120, 2018.







# Edge of chaos in collective motion







- Edge of chaos, criticality and phase transitions
- Complex systems are dynamical systems with undecidable dynamics
- The Liar paradox and the halting problem
- Self-reference (and diagonalisation)
- Meta-simulation and novelty generation





- 1. Deaths. Any live cell with fewer than two or more than three live neighbours dies.
- 2. Survivals. Any live cell with two or three live neighbours lives on to the next generation.
- 3. Births. Any dead cell with exactly three live neighbours becomes a live cell.





# Game of Life: convergence?





# Game of Life: convergence?







- Edge of chaos, criticality and phase transitions
- Complex systems are dynamical systems with undecidable dynamics
- The Liar paradox and the halting problem
- Self-reference (and diagonalisation)
- Meta-simulation and novelty generation



# The Liar paradox





# Turing Machine (...not that one)



The Imitation Game, 2014



# **Turing Machine**







# **Turing Machine**



Progress of the computation (state-trajectory) of a 3-state busy beaver



# Universal Turing Machine: can simulate any other machine





# Universal Decider Turing Machine: does it exist?

$$P([M, w]) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

M. Prokopenko, M. Harré, J. Lizier, F. Boschetti, P. Peppas, S. Kauffman, Self-referential basis of undecidable dynamics: from The Liar Paradox and the halting Problem to the edge of chaos, *Physics of Life Reviews*, 31: 134-156, 2019.



# Universal Decider Turing Machine: does it exist?

$$P([M, w]) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

$$V([M]) = \begin{cases} reject & \text{if } M \text{ accepts } [M] \\ accept & \text{if } M \text{ does not accept } [M] \end{cases}$$



# Universal Decider Turing Machine: does not exist!

$$P([M, w]) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

$$V([M]) = \begin{cases} reject & \text{if } M \text{ accepts } [M] \\ accept & \text{if } M \text{ does not accept } [M] \end{cases}$$

$$V([V]) = \begin{cases} reject & \text{if } V \text{ accepts } [V] \\ accept & \text{if } V \text{ does not accept } [V] \end{cases}$$



## The Liar paradox







- Edge of chaos, criticality and phase transitions
- Complex systems are dynamical systems with undecidable dynamics
- The Liar paradox and the halting problem
- Self-reference (and diagonalisation)
- Meta-simulation and novelty generation



#### Self-reference







DNA: genetic instructions (sequence) used in development and functioning of a living organism (structure) – a set of "blueprints" needed to construct other components of cells, and copy itself



### Self-reference





#### **Drawing Hands:**

the product, the hands, are undertaking the operation – the drawing of the hands

#### El Farol Bar Problem:

if less than 60% of the population go to the bar, then ••••••

if more than 60% of the population go to the bar, then



Table 3
The cell i, j is 'accept' if  $M_i$  accepts  $[M_j]$ 

| 95    | $[M_1]$ | $[M_2]$ | $[M_3]$ |     |
|-------|---------|---------|---------|-----|
| $M_1$ | accept  |         | accept  |     |
| $M_2$ | accept  | accept  | accept  |     |
| $M_3$ |         | accept  |         |     |
| •     |         | ·       |         |     |
|       |         | •       |         | · . |

M. Prokopenko, M. Harré, J. Lizier, F. Boschetti, P. Peppas, S. Kauffman, Self-referential basis of undecidable dynamics: from The Liar Paradox and the halting Problem to the edge of chaos, *Physics of Life Reviews*, 31: 134-156, 2019.



universal decider

Table 3
The cell i, j is 'accept' if  $M_i$  accepts  $[M_j]$ 

|                  | $[M_1]$ | $[M_2]$ | $[M_3]$ |      |
|------------------|---------|---------|---------|------|
| $\overline{M_1}$ | accept  |         | accept  |      |
| $M_2$            | accept  | accept  | accept  |      |
| $M_3$            |         | accept  |         |      |
| •                |         | •       |         | ¥.,, |
| :                |         | •       |         |      |

Table 4
The cell i, j is the outcome of running P on  $[M_i[M_j]]$ .

|       | 12 Table 12 | 242.4   | English a |       |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-------|
|       | $[M_1]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $[M_2]$ | $[M_3]$   | • • • |
| $M_1$ | accept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | reject  | accept    |       |
| $M_2$ | accept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | accept  | accept    |       |
| $M_3$ | reject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | accept  | reject    |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ¥.      |           |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *       |           | •     |



-- inverter of universal decider

Table 5
The cell (k, j) is the outcome of running  $V = M_k$  (the inverter of P) on  $[M_k[M_j]]$ 

|                  | $[M_1]$ | $[M_2]$ | $[M_3]$ | • • • | $[M_k]$ |   |
|------------------|---------|---------|---------|-------|---------|---|
| $\overline{M_1}$ | accept  | reject  | accept  |       | accept  |   |
| $M_2$            | accept  | accept  | accept  | • • • | reject  |   |
| $M_3$            | reject  | accept  | reject  |       | reject  |   |
|                  |         | #<br>*  |         |       |         |   |
| $M_k$            | reject  | reject  | accept  |       |         |   |
| •                |         | :       |         |       |         | • |



inverter of universal decider

Table 5
The cell (k, j) is the outcome of running  $V = M_k$  (the inverter of P) on  $[M_k[M_j]]$ . A contradiction occurs at cell (k, k).

|       | $[M_1]$ | $[M_2]$ | $[M_3]$ | • • • • | $[M_k]$                                                   | ••• |
|-------|---------|---------|---------|---------|-----------------------------------------------------------|-----|
| $M_1$ | accept  | reject  | accept  |         | accept                                                    |     |
| $M_2$ | accept  | accept  | accept  |         | reject                                                    |     |
| $M_3$ | reject  | accept  | reject  |         | reject                                                    |     |
|       |         | :<br>:  |         | ٠.      |                                                           |     |
| $M_k$ | reject  | reject  | accept  |         | $\left(\begin{array}{c} \underline{?} \end{array}\right)$ |     |
|       |         |         |         |         | Shippy                                                    |     |
|       |         | i       |         |         | th                                                        | is  |

 $\mathcal{F} \vdash \gamma \leftrightarrow \neg \text{Provable}_{\mathcal{F}}(\lceil \gamma \rceil)$ 





-- inverter of universal decider

Table 5
The cell (k, j) is the outcome of running  $V = M_k$  (the inverter of P) on  $[M_k[M_j]]$ . A contradiction occurs at cell (k, k).

|       | $[M_1]$ | $[M_2]$ | $[M_3]$ | • • • • | $[M_k]$                                                   | • • • |
|-------|---------|---------|---------|---------|-----------------------------------------------------------|-------|
| $M_1$ | accept  | reject  | accept  |         | accept                                                    |       |
| $M_2$ | accept  | accept  | accept  | • • •   | reject                                                    |       |
| $M_3$ | reject  | accept  | reject  |         | reject                                                    |       |
|       |         | ¥<br>*  |         |         |                                                           |       |
| $M_k$ | reject  | reject  | accept  |         | $\left(\begin{array}{c} \underline{?} \end{array}\right)$ |       |
|       |         | *       |         |         |                                                           |       |
|       |         | į       |         |         |                                                           | - 7   |

$$\mathcal{F} \vdash \gamma \leftrightarrow \neg \text{Provable}_{\mathcal{F}}(\lceil \gamma \rceil)$$





- Edge of chaos, criticality and phase transitions
- Complex systems are dynamical systems with undecidable dynamics
- The Liar paradox and the halting problem
- Self-reference (and diagonalisation)
- Meta-simulation and novelty generation



# Universal Cellular Automata: a Metapixel





### Conclusions

$$\mathcal{F} \vdash \gamma \leftrightarrow \neg \text{Provable}_{\mathcal{F}}(\lceil \gamma \rceil)$$









- recursive formal systems, Turing machines and Cellular Automata are deeply related
- these frameworks can produce universal computation and generate undecidable dynamics
- undecidability is generated by self-reference, infinite computation and negation
- computational novelty can be created by agents using the diagonalization argument
- complex systems are dynamical systems with undecidable dynamics

# THE UNIVERSITY OF SYDNEY

#### References

- Bennett C. H. Undecidable dynamics. *Nature*, 346: 606–607, 1990.
- Buldt B. On fixed points, diagonalization, and self-reference. In: Freitag W, Rott H, Sturm H, Zinke A, eds. Von Rang und Namen: essays in honour of Wolfgang Spohn. Münster: Mentis, 47–63, 2016.
- Casti J. L. Chaos, Gödel and truth. In: Casti J. L, Karlqvist A., eds. Beyond belief: randomness, prediction, and explanation in science.
   CRC Press, 1991.
- Cook M. Universality in elementary Cellular Automata. Complex Systems, 15(1): 1–40, 2004.
- Crosato E., Spinney R., Nigmatullin R., Lizier J., Prokopenko M. Thermodynamics of collective motion near criticality, *Physical Review E*, 97: 012120, 2018.
- Gaifman H. Naming and diagonalization, from Cantor to Gödel to Kleene. Logic Journal of the IGPL, 14(5): 709–728, 2006.
- Ilachinski A. Cellular Automata: a discrete universe. Singapore: World Scientific, 2001.
- Kauffman S. Humanity in a creative universe. New York, NY, USA: Oxford University Press, 2016.
- Langton C. G. Computation at the edge of chaos: phase transitions and emergent computation. *Physica D*, 42(1–3): 12–37, 1990.
- Markose S. M. Novelty in complex adaptive systems (CAS) dynamics: a computational theory of actor innovation. Physica A: Statistical Mechanics and its Applications, 344(1): 41–49, 2004.
- Moore C. Unpredictability and undecidability in dynamical systems. *Physical Review Letters*, 64(20): 2354–2357, 1990.
- Prokopenko M., Harré M., Lizier J., Boschetti F., Peppas P., Kauffman S., Self-referential basis of undecidable dynamics: from The Liar Paradox and the halting Problem to the edge of chaos. *Physics of Life Reviews*, 31: 134-156, 2019.
- Sipser M. *Introduction to the theory of computation*, 1st edition. Thomson Publishing: International, 1996.
- Sutner K. Computational classification of Cellular Automata. International Journal of General Systems, 41(6): 595–607, 2012.
- Wolfram S. A new kind of science. Champaign, Illinois, US, United States: Wolfram Media Inc., 2002.