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gaswme  Spanish Flu 1918: 500 million infected, with deaths of three to five
- percent of the world's population

‘A
Soldiers from Fort Riley, Kansas, ill with Spanish ihfluenza at a hospital ward at Camp Funston
Otis Historical Archives Nat'l| Museum of Health & Medicine - NCP 1603
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Pandemic Influenza: The Inside Story. Nicholls H, PLoS Biology Vol. 4/2/2006, e50
courtesy of the National Museum of Health and Medicine



Hundred years later...

“I had hoped that hitting the 100th
anniversary of this epidemic (Spanish flu)
would spark a lot of discussion about
whether we're ready for the next global
epidemic. Unfortunately, it didn't, and we
still are not ready”

Bill Gates
Chair of Bill & Melinda Gates Foundation
2018

https://www.gatesnotes.com/About-Bill-Gates/Year-in-Review-2018



Zesaem The Delta variant: 3 pandemic wave in Australia

(November 3, 2021)

Daily new confirmed COVID-19 cases

7/-day rolling average. Due to limited testing, the number of confirmed cases is lower than the true number of infections.
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Zesaem The Omicron variant: 4" pandemic wave in Australia

- (July 16, 2022)

Daily new confirmed COVID-19 cases per million people
7-day rolling average. Due to limited testing, the number of confirmed cases is lower than the true number of infections.
LINEAR | LOG
Australia
1,000
100
10
i |
0.1
Mar 1, 2020 Aug 8, 2020 Feb 24,2021 Sep 12,2021 Jul 15,2022
Source: Johns Hopkins University CSSE COVID-19 Data CCBY

’ Jan 31,2020 C_} Jul 15, 2022



Compartmental models in epidemiology:

SYDNEY _ _
Susceptible — Infectious — Recovered

A Contribution to the Mathematical Theory of Epidemics.

By W. O. Keryack and A. G. McKENDRICK.
(Communicated by Sir Gilbert Walker, F.R.S.—Received May 13, 1927.)

(From the Laboratory of the Royal College of Physicians, Edinburgh.)

Introduction.

(1) One of the most striking features in the study of epidemics is the difficulty
of finding a causal factor which appears to be adequate to account for the
magnitude of the frequent epidemics of disease which visit almost every popula-
tion. It was with a view to obtaining more insight regarding the effects of the
various factors which govern the spread of contagious epidemics that the present
investigation was undertaken. Reference may here be made to the work of Ross



N Compartmental models in epidemiology:

Susceptible — Infectious — Recovered

900
800 } :
700 } 3

600 |
500 |
400 |
300 f
200 }

100 f

. 1 'l

5 10 15 20 25 30
weeks

The accompanying chart is based upon figures of deaths from plague in the island of
Bombay over the period December 17, 1905, to July 21, 1906. The ordinate represents
the number of deaths per week, and the abscissa denotes the time in weeks. As at least
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N Compartmental models in epidemiology:

Susceptible — Infectious — Recovered
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SYDNEY Epidemic modelling: reproductive ratio R,

. Patient Zero
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Zepumm Different questions: How to “zoom in” ?

*

Where / how to intervene?
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a - &
Agents Agent-agent interactions Agent-environment interactions

https://www.bankofengland.co.uk/quarterly-bulletin/2016/q4/agent-based-models-understanding-the-economy-from-the-bottom-up
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A little bit more on history...

World Scientific

www.worldscientific.com

Vol. 15, No. 1 (2004) 193-201
© World Scientific Publishing Company

International Journal of Modern Physics C [
&

LARGE-SCALE MOLECULAR-DYNAMICS SIMULATION
OF 19 BILLION PARTICLES

KAI KADAU
Theoretical Division, Los Alamos National Laboratory
MS B262, Los Alamos, New Mexico 875}5, USA
kkadau@lanl.gov

TIMOTHY C. GERMANN

Applied Physics Division, Los Alamos National Laboratory
MS F699, Los Alamos, New Mezico 875,5, USA
teg@lanl.gov

PETER S. LOMDAHL

Theoretical Division, Los Alamos National Laboratory
MS B262, Los Alamos, New Mexico 875}5, USA
prl@lanl.gov

Received 8 August 2003
Revised 10 August 2003
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Scalable Parallel Short-range Molecular dynamics
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Fig. 3. = 37 million particles rendered on four PN with a resolution of 5000 pixel by 5000 pixel
(top). The bottom shows a close-up of the same picture file. The grayscale represents the potential
energies of the atoms from —6 to —2 (grayscale version of the original color picture).
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...Next step

Mitigation strategies for pandemic influenza

in the United States

Timothy C. Germann**, Kai Kadau*, Ira M. Longini, Jr.*, and Catherine A. Macken*

*Los Alamos National Laboratory, Los Alamos, NM 87545; and *Program of Biostatistics and Biomathematics, Fred Hutchinson Cancer Research Center and
Department of Biostatistics, School of Public Health and Community Medicine, University of Washington, Seattle, WA 98109

Communicated by G. Balakrish Nair, International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh, February 16, 2006

(received for review January 10, 2006)

Recent human deaths due to infection by highly pathogenic (H5N1)
avian influenza A virus have raised the specter of a devastating
pandemic like that of 1917-1918, should this avian virus evolve to
become readily transmissible among humans. We introduce and
use a large-scale stochastic simulation model to investigate the
spread of a pandemic strain of influenza virus through the U.S.
population of 281 million individuals for Ry (the basic reproductive
number) from 1.6 to 2.4. We model the impact that a variety of

resources to minimize the impact of the outbreak? Precise
planning is hampered by several unknowns, most critically the
eventual human-to-human transmissibility of the human-
adapted avian strain (characterized by the basic reproductive
number Ry, the average number of secondary infections caused
by a single typical infected individual among a completely
susceptible population), and the supply of therapeutic agents.
Manufacturers of neuraminidase inhibitors, such as oseltamivir,



Zepumm Pandemic influenza: agent-based modelling
(Germann et al., 20006)
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SDONEY Our influenza pandemic modelling research

(2016-2019)

» Modelling pandemics with large-scale high-resolution agent-based models

demographics: from census based data to agents

mobility: travel patterns including long-distance

infection: disease transmission and natural history models

ACEMod — Australian Census-based Epidemic Model

» Influenza pandemics (H1N1):
= pandemic trends (peaks, synchrony, bimodality, critical regimes)
= effects of urbanisation
= counter-factual analysis

= efficiency of interventions: geographically-targeted anti-prophylaxis (GTAP),
contact-targeted anti-prophylaxis (TAP), vaccination
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. . @ D@
> Large-scale high-resolution agent-based models @ @
| %™l
= demographics: from census based data to agents X |
= mobility: travel patterns including long-distance %
= infection: epidemiology @@ @@@ %»é
@V @Y |@¥
» AMTraC-19: Agent-based Model of Transmission and Control of

the COVID-19 pandemic in Australia (~ 24M agents)

> Model calibration and validation during COVID-19 pandemic

= first wave (Australia: March — June 2020)

= second wave (Victoria: July — September 2020)

= third wave (NSW / Australia: June — November 2021) ;;;;;'e

oooooo
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Features of AMTraC-19

« ~24M stochastically generated agents (Census, ABS & ACARA data)
* household size and composition vary across different local areas

e commuting patterns between residence and work / study

 flexible infection seeding scenarios '

« transmission within mixing contexts

 different symptomatic ratios for children and adults

* vaccination rollout with two vaccines o) 0 0

= W uf W =

« vaccine efficacy split across components (infection, symptoms, transmission)

« varying social distancing (“stay-at-home” restrictions)

S. L. Chang, N. Harding, C. Zachreson, O. M. CIiff, M. Prokopenko, Modelling transmission and control of the
COVID-19 pandemic in Australia, Nature Communications, 11, 5710, 2020.

C. Zachreson, S. L. Chang, O. M. CIliff, M. Prokopenko, How will mass-vaccination change COVID-19 lockdown
requirements in Australia? The Lancet Regional Health — Western Pacific, 14: 100224, 2021.
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“Same storm, different boats”: Agent-based Modelling

household

o neighbourhood

household cluster

= community

- working group

Agent attributes:
* demographic
e commute pattern
- S EILR
« pathogenesis
« compliance
(Cl, HQ, SC, SD)
* vaccination, etc.

C. Zachreson, K. M. Fair, N. Harding, M. Prokopenko, Interfering with influenza: nonlinear coupling of reactive
and static mitigation strategies, Journal of Royal Society Interface, 17(165): 20190728, 2020.
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residential areas and destination zones
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*

Fig. 1 Maps of the Greater Sydney region illustrating the distribution of population partitions. (a) A map of the
Greater Sydney region showing SA2 (black) and SA1 (red) population partitions. (b) A map of the same area
showing SA2 (black) and DZN (red) partitions. The inset in (b) zooms in on the Sydney central business district
to illustrate the much denser packing of DZN partitions in that area.

K. M. Fair, C. Zachreson, M. Prokopenko, Creating a surrogate commuter network from Australian Bureau of
Statistics census data, Scientific Data, 6, 150, 2019.
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SYDNEY Australian Census-based Epidemic Model: ACEMod

Simulation Modelling Practice and Theory 87 (2018) 412-431

Contents lists available at ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier.com/locate/simpat

Check for
updates

Investigating spatiotemporal dynamics and synchrony of influenza
epidemics in Australia: An agent-based modelling approach

a,b

Oliver M. Cliff"“, Nathan Harding", Mahendra Piraveenan®, E. Yagmur Erten™”,
Manoj Gambhir®, Mikhail Prokopenko™*

# Centre for Complex Systems, Faculty of Engineering and IT, University of Sydney, Sydney, NSW 2006, Australia

b Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
©IBM Research, Melbourne, Australia

4 Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW 2145, Australia
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SYDNEY Australian Census: travel-to-work data (mobility)
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Fig. B1. Commute distance distributions.
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Airport code State City Passengers
SYD NSW Sydney 40884
MEL VIC Melbourne 25859
BNE QLD Brisbane 14250
PER WA Perth 11449
OOL QLD Gold Coast 3022
ADL SA Adelaide 2214
CNS QLD Cairns 1874
DRW NT Darwin 997
TSV QLD Townsville 105

International air traffic

S i

ADL /QVJ
MEL ™ 3

Fig. 3. Daily incoming passengers per Australian international airport obtained from BITRE [30] along with a map detailing the airport locations.

O. M. CIiff, N. Harding, M. Piraveenan, E. Y. Erten, M. Gambhir, M. Prokopenko, Investigating Spatiotemporal
Dynamics and Synchrony of Influenza Epidemics in Australia: An Agent-Based Modelling Approach, Simulation

Modelling Practice and Theory, 87, 412-431, 2018.
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Epidemic modelling: natural history of the disease
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(a) Natural history of the disease. (b) Simulated generation time.

Fig. 2. Natural history of the disease and corresponding simulated generation time. The disease dynamics are modelled as having a linear increase
followed by a linear decrease, as illustrated in Fig. 2 (a). In the figure, the area under the curve is shaded according to the proportion of people at
least that infectious after disease onset (darker representing a higher proportion). If an agent becomes symptomatic, their infectiousness doubles
(dashed blue line) from that day onward. Moreover, 67% of agents become symptomatic; of these agents, 30% start showing symptoms on day 1,
50% on day 2, and the remaining 20% on day 3. We obtain empirical generation times from simulations resulting from this model, shown in 2(b) for
a number of R, values. The confidence intervals range from 3.35 to 3.39 days (also shown on Fig. 2(a)), depending on R, and, in general, the

generation time has a slight downward trend as a function of disease severity.

O. M. CIiff, N. Harding, M. Piraveenan, E. Y. Erten, M. Gambhir, M. Prokopenko, Investigating Spatiotemporal
Dynamics and Synchrony of Influenza Epidemics in Australia: An Agent-Based Modelling Approach, Simulation
Modelling Practice and Theory, 87, 412-431, 2018.



THE UNIVERSITY OF

Epidemic modelling: natural history of the disease
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N. Harding, R. E. Spinney, M. Prokopenko, Phase transitions in spatial connectivity during influenza pandemics,
Entropy, 22(2), 133, 2020.
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Table C2

Epidemic modelling: transmission probabilities

Daily transmission probabilities q}.g_yi for different contact groups g, obtained by Eq. (4) where ,5’35_)1. are reported by [10].

Contact Group g Infected Individual j Susceptible Individual i Transmission Probability qqui
Household size 2 Any Child (<19) 0.0933
Any Adult (=18) 0.0393
Household size 3 Any Child (<19) 0.0586
Any Adult (=18) 0.0244
Household size 4 Any Child (<19) 0.0417
Any Adult (=18) 0.0173
Household size 5 Any Child (<19) 0.0321
Any Adult (=18) 0.0133
Household size 6 Any Child (<19) 0.0259
Any Adult (=18) 0.0107
School Child (<19) Child (<19) 0.000292
Grade Child (<19) Child (<19) 0.00158
Class Child (<19) Child (<19) 0.035

pi(n) =1-

p?—z-i{ﬂj =K f(n— L | J) qh?—}i

H H [:1 _p‘?—}i{ﬂ’”

geGi(n) | jeAg\1

global scalar

B/v= Ro
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Agent-based interactions

Role of social networks in shaping disease
transmission during a community outbreak
of 2009 HIN1 pandemic influenza

Simon Cauchemez®', Achuyt Bhattarai®, Tiffany L. Marchbanks®, Ryan P. Fagan®, Stephen Ostroff¢, Neil M. Ferguson?,

David Swerdlow®, and the Pennsylvania H1N1 working group

b,c,2

®Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial
College London, London W2 1PG, United Kingdom; PCenters for Disease Control and Prevention, Atlanta, GA 30333; and ‘Pennsylvania Department of Health,

Harrisburg, PA 17120-0701

Edited by David Cox, Nuffield College, Oxford, United Kingdom, and approved December 22, 2010 (received for review June 22, 2010)

Evaluating the impact of different social networks on the spread
of respiratory diseases has been limited by a lack of detailed data
on transmission outside the household setting as well as appro-
priate statistical methods. Here, from data collected during a HIN1
pandemic (pdm) influenza outbreak that started in an elementary
school and spread in a semirural community in Pennsylvania, we
quantify how transmission of influenza is affected by social net-
works. We set up a transmission model for which parameters are
estimated from the data via Markov chain Monte Carlo sampling.
Sitting next to a case or being the playmate of a case did not
significantly increase the risk of infection; but the structuring of

sylvania to investigate how social networks and population struc-
tures affect influenza transmission.

Results and Discussion

Outbreak Investigation. Fig. 1 presents the data that were col-
lected during the outbreak investigation. Demographic and
clinical information on 370 (81%) students from 295 (81%)
households and their 899 household contacts was collected
during two rounds of phone interviews (May 16-21 and May 26—
June 2). One hundred twenty-nine (35%) students and 141
(16%) household contacts were reported to have had acute re-
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== SYDNEY Social interactions (Cauchemez et al., 2010)
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Fig. 1. Epidemiological data collected in the school. (A) Number of acute respiratory illness (ARI) cases by date of symptom onset for different types of
individuals. (B-D) Survey of fourth graders with (B) seating charts and diagnosis for ARI in classroom C, (C) number of ARI cases by date of symptom onset and
sex among fourth graders, and (D) social networking among fourth graders based on the question “Who are your playmates?” [color of the nodes, red,
female; blue, male; color of the lines, red, girl-girl interaction; cyan, boy-boy interaction; green, boy-girl interaction (one symbol shape per class)]. The
algorithm used to draw the network aims at (i) distributing nodes evenly, (i/) making edge length uniform, (iii) minimizing edge crossings, and (iv) keeping
nodes from coming too close to edges (32, 33) (software: Netdraw). It does not use data on sex to position the nodes.
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Table C1
Daily contact probabilities cf.,; for different contact groups g, reported by [22].

Mixing group g Infected individual j Susceptible individual i Contact probability ng‘%i
Household cluster Child (<19) Child (<19) 0.08
Child (<19) Adult (>18) 0.035
Adult (>18) Child (<19) 0.025
Adult (>18) Adult 0.04
Working Group Adult (19-64) Adult (19-64) 0.05
Neighbourhood Any Child (0-4) 0.0000435
Any Child (5-18) 0.0001305
Any Adult (19-64) 0.000348
Any Adult (65+) 0.000696
Community Any Child (0-4) 0.0000109
Any Child (5-18) 0.0000326
Any Adult (19-64) 0.000087
Any Adult (65+) 0.000174

O. M. CIiff, N. Harding, M. Piraveenan, E. Y. Erten, M. Gambhir, M. Prokopenko, Investigating Spatiotemporal
Dynamics and Synchrony of Influenza Epidemics in Australia: An Agent-Based Modelling Approach, Simulation
Modelling Practice and Theory, 87, 412-431, 2018.
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Epidemic modelling: reproductive ratio R,
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C. Zachreson, K. M. Fair, N. Harding, M. Prokopenko, Interfering with influenza: nonlinear coupling of reactive
and static mitigation strategies, J. Royal Society Interface, 17(165): 20190728, 2020.



THE UNIVERSITY OF

SYDNEY Epidemic modelling: reproductive ratio R,

§ 047 § ™7
; ;
= 03- = 034
o a
g g
E’ 0.2 @ 0.2
@ @
-:;; 0.1 -}é 0.1
g g
00— [ T [ J [ T [ 0.0 [ I [ I I I
08 12 16 20 10 12 14 16 18 20 22
Rr'aan RARFW

C. Zachreson, K. M. Fair, N. Harding, M. Prokopenko, Interfering with influenza: nonlinear coupling of reactive
and static mitigation strategies, J. Royal Society Interface, 17(165): 20190728, 2020.
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— Ry = 1.00

Proportion of incidence

Day

O. M. CIiff, N. Harding, M. Piraveenan, E. Y. Erten, M. Gambhir, M. Prokopenko, Investigating Spatiotemporal
Dynamics and Synchrony of Influenza Epidemics in Australia: An Agent-Based Modelling Approach, Simulation
Modelling Practice and Theory, 87, 412-431, 2018.
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— Ry = 1.00

Day

“herd immunity” threshold: 1-1/R,
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Hierarchical spatial spread or wave-like diffusion??

C. Viboud, O.N. Bjgrnstad, D.L. Smith, L. Simonsen, M.A. Miller, B.T. Grenfell, Synchrony, waves,
and spatial hierarchies in the spread of influenza, Science 312 (5772) (2006) 447—-451.

The regional spread of infection correlates more closely with rates of movement of
people to and from their workplaces (workflows) than with geographical distance.

The hierarchy of spread is immediately apparent: The most populous states
exhibit synchronized epidemics, whereas less populated states exhibit more
erratic patterns, both relative to each other and to the continental norm.
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Spatiotemporal synchrony
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- Hierarchical spatial spread or wave-like diffusion??
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O. M. CIiff, N. Harding, M. Piraveenan, E. Y. Erten, M. Gambhir, M. Prokopenko, Investigating Spatiotemporal
Dynamics and Synchrony of Influenza Epidemics in Australia: An Agent-Based Modelling Approach, Simulation
Modelling Practice and Theory, 87, 412-431, 2018.
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RESEARCH ARTICLE SOCIAL SCIENCES

Urbanization affects peak timing, prevalence, and
bimodality of influenza pandemics in Australia: Results
of a census-calibrated model

Cameron Zachreson'-", Kristopher M. Fair', Oliver M. Cliff', Nathan Harding', Mahendra Piraveenan’ and Mikhail
Prokopenko'-?

TComplex Systems Research Group, School of Civil Engineering, Faculty of Engineering and IT, The University of Sydney, Sydney, NSW
2006, Australia.

2Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead, NSW 2145, Australia.
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International air traffic

Table 1. Average daily incoming international air traffic.

Year

Airport State

2006 2011 2016
Sydney New South Wales 13,214 15,995 19,991
Merour ne ................... V ,Ctona .................... 5 9238 557 ........... 1 2802
anbaneQueens|and5053 ............. 5 9467299
Perth ................... WestemAustraha276645125906
GO|dC0aStQueenS|and ................. 285 .............. 1044 ............ : 435
Ade|a, de ................ 5 OUthAu Stra“a ............... 4 92 ............... 766 .............. ; 1 70
Ca,mSQueenS|and ................ 1186 ............. 707 ............... 8 24
Darwm ................. N O,th e m Temtory ............ 160 ............... 356 ............... 3 55
Townsv,||eQueens|and ................... 0 .................. 1 1 ................. 3 9
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C. Zachreson, K. M. Fair, O. M. CIiff, N. Harding, M. Piraveenan, M. Prokopenko, Urbanization affects peak
timing, prevalence, and bimodality of influenza pandemics in Australia: Results of a census-calibrated model,
Science Advances, 4(12), eaau5294, 2018.
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» seeding conditions have a larger impact on the first wave than on the second

» seeding does not account for the decrease in the intensity of the second pandemic
wave from year to year, a trend that we ascribe to increased urbanisation



Zepan COVID-19: natural history of the disease

(our 2020 model: AMTraC-19 version 6.1)

1 3 | | |
—— Symptomatic Infectivity
0.8 Asymptomatic Infectivity —
----------- Onset of infectiousness
g 0.6 = = = Peak infectiousness ¢,
5
3
= 04
=
0.2
0
0 2 4 6 8 10 12 14 16 18

S. L. Chang, N. Harding, C. Zachreson, O. M. CIiff, M. Prokopenko, Modelling transmission and control of the
COVID-19 pandemic in Australia, Nature Communications, 11, 5710, 2020.
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AMTraC-19 validation (version 6.1)
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Social Distancing (SD): “stay-at-nome” restrictions

Table 2 The micro- and macro-distancing parameters: macro-compliance levels and context-dependent micro-distancing levels.

Strategy Macro-distancing Micro-distancing contacts
Compliance levels Household Community Workplace/school
No intervention 100% 100% 100% 100%
Case isolation 70% 100% 25% 25%
Home quarantine 50% 200% 25% 25%
School closure (children) 100% 150% 150% 0%
School closure (parents) 25 or 50% 150% 150% 0%
Social distancing 0-100% (100% 50% 0% | —
, 1 w9
pz(n) =1 H H (1 pj—m’(n))

pi(n)

-1l

geGi(n)

l

L-Fy@) [1- ] =F0) pi(0)

/jEAg\{i}

S. L. Chang, N. Harding, C. Zachreson, O. M. CIiff, M. Prokopenko, Modelling transmission and control of the
COVID-19 pandemic in Australia, Nature Communications, 11, 5710, 2020.
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Tipping point (phase transition) in SD compliance
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’ (our 2021 model: AMTraC-19 version 7.6)

 infectious incubation period is log-normally distributed with mean 4.4 5:5 days

 infectious asymptomatic or symptomatic period, following incubation, lasts
between 7 and 14 days (uniformly distributed with mean 10.5 days)

 differentiation between:
» “asymptomatic infectivity" (factor of 0.5) and
> “pre-symptomatic infectivity" (factor of 1.0)

« detection probabilities:
» symptomatic (detection per day is 0.23)
> pre-symptomatic and asymptomatic (detection per day is 0.01)

C. Zachreson, S. L. Chang, O. M. Cliff, M. Prokopenko, How will mass-vaccination change COVID-19 lockdown
requirements in Australia? The Lancet Regional Health — Western Pacific, 14: 100224, 2021.
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e Natural history of the disease

(the Delta variant model: AMTraC-19 version 7.7)
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S. L. Chang, O. M. CIiff, C. Zachreson, M. Prokopenko, Simulating Transmission Scenarios of the Delta Variant of
SARS-CoV-2 in Australia, Frontiers in Public Health, 10, 10.3389/fpubh.2022.823043, 2022.
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(the Delta variant model: AMTraC-19 version 7.7)

Table S3. Main parameters for AMTraC-19 transmission model.

parameter value distribution notes
K 5.3 NA global transmission scalar
e 4.4 days (mean) | lognormal (i = 1.396, 0 = 0.413) incubation period
Trep 10.5 days (mean) uniform [7, 14] days symptomatic (or asymptomatic) period
o 0.5 NA asymptomatic transmission scalar
p 0.08 NA contact-to-transmission scalar
0q 0.67 NA probability of symptoms in adults (age > 18)
Oc 0.134 or 0.268 NA probability of symptoms in children (age < 18)
T'symp 0.227 NA daily case detection rate (symptomatic)
Tasymp 0.01 NA daily case detection rate (asymptomatic)

S. L. Chang, O. M. CIiff, C. Zachreson, M. Prokopenko, Simulating Transmission Scenarios of the Delta Variant of
SARS-CoV-2 in Australia, Frontiers in Public Health, 10, 10.3389/fpubh.2022.823043, 2022.
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Social distancing (SD): “stay-at-home” restrictions

Compliance Interaction strength

Household Community Workplace
Case isolation 0.7-0.8 1.0 0.1-0.25 0.1-0.25
Home quarantine 0.5-0.7 2.0 0.1-0.25 0.1-0.25
School (students) 1.0 1.0 0.1-0.5 0.0
School (parents) 0.5 1.0 0.1-0.5 0.0
Social distancing 0.0-1.0 1.0 0.1-0.25 0.1

S. L. Chang, O. M. Cliff, C. Zachreson, M. Prokopenko, Simulating Transmission Scenarios of the Delta Variant of
SARS-CoV-2 in Australia, Frontiers in Public Health, 10, 10.3389/fpubh.2022.823043, 2022.
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(our 2021 model: AMTraC-19 version 7.6)

« Efficacy for susceptibility (VES): impacts immunity in those susceptible to O
the virus (reduces the probability of becoming infected if exposed) ="
« Efficacy for disease (VEd): impacts the expression of illness in those who o

are vaccinated and subsequently become infected (reduces the probability "
of expressing symptoms if infected)

« Efficacy for infectiousness (VEI): impacts the potential for vaccinated 0
individuals to transmit the virus if infected (reduces the force of infection W=
produced by infected individuals who are vaccinated)

VE = VEd + VEs - VEs x VEd VEi=~0.5

for example: 0.91=0.7+0.7-0.7x0.7
0.92=0.8+0.6-0.8x0.6

0.75=05+0.5-0.5%x0.5
0.65=05+0.3-0.5%x0.3

C. Zachreson, S. L. Chang, O. M. Cliff, M. Prokopenko, How will mass-vaccination change COVID-19 lockdown
requirements in Australia? The Lancet Regional Health — Western Pacific, 14: 100224, 2021.



Vaccine efficacy and herd immunity (...textbook)

Vaccine efficacy: VE = 1 -risk

where risk is relative risk for developing a condition in vaccinated
people compared to unvaccinated people

Herd immunity threshold:

1-1/R,
VE
Rp=2.75 and VE=0.9:
1-1/275 0.707
09
R,=5.5 and VE =0.8:
1-1/5.5
= 1.023

0.8



Vaccination components




The Delta variant: scenarios across Australia

SYDNEY
(25 August — 5 November 2021)
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a threefold reduction for 10% increase in SD
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a threefold reduction for 10% increase in SD
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SYDNEY Fatalities (cumulative):

: a two-fold reduction for 10% increase in SD
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>
>
>
>
>
>
>
>

tipping points in social distancing (SD) compliance

highly-transmissible variants strongly amplify small changes in SD compliance
equity of vaccination targets: must be met for all population subgroups
vaccination efficacy diminishes over time

vaccine uptake and SD levels are uneven across demographics

capacity limits of testing, tracing, isolation, quarantine measures

declining compliance with SD

multiple waves (superposition and heterogeneity)
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SYDNEY ABM: a fine-grained approach

» Strengths:

= individual-based rather than aggregate focus

= age-dependent epidemic characteristics

= geospatial accuracy and cross-jurisdictional impact

= nonlinearity: superposition of multiple waves

= time-dependent and context-dependent interventions (NPIs and
vaccination)

= counter-factual analysis (“what-if” scenarios: delays, scale, scope)

= critical phenomena analysis

» Weaknesses:
= need to calibrate multiple parameters

= reliance on high-performance computing
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= feedback from genomics

= In-hospital transmissions

= holidays, school terms, annual leaves, etc.

= maritime traffic (cruise ships)

= friendship networks

= contact tracing and large-scale testing capacity
= in-hotel quarantine

= occupation-based (sector-based) analysis — refined exit strategies
= seasonal effects

= GTAP, TAP (COVID-19 specific)

= |ocal “lockdowns” (area quarantine)
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